分析 (1)由f(0)=3,設(shè)f(x)=ax2+bx+3,由f(x+1)-f(x)=2x+3,代入即可求得a和b的值,求得f(x)的解析式;
(2)由(1)可知,g(x)=f(x)-ax=(x-$\frac{a-2}{2}$)2+3-$\frac{(a-2)^{2}}{4}$,根據(jù)x∈[0,2],有二次函數(shù)的性質(zhì),分類即可求得g(x)的最小值,求得g(a)的表達(dá)式.
解答 解:(1)設(shè)二次函數(shù)f(x)=ax2+bx+c,由f(0)=3,
∴c=3,
∴f(x)=ax2+bx+3,
又f(x+1)-f(x)=2x+3,
∴a(x+1)2+b(x+1)+3-[ax2+bx+3]=2x+3,
即2ax+a+b=2x+3,
∴$\left\{\begin{array}{l}{2a=2}\\{a+b=3}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=1}\\{b=2}\end{array}\right.$,
∴f(x)=x2+2x+3;
(2)g(x)=f(x)-ax=x2+(2-a)x+3=(x-$\frac{a-2}{2}$)2+3-$\frac{(a-2)^{2}}{4}$,
當(dāng)$\frac{a-2}{2}$≤0時(shí),即a≤2時(shí),ymin=g(0)=3,
當(dāng)0<$\frac{a-2}{2}$<2時(shí),即2<a<4時(shí),ymin=g($\frac{a-2}{2}$)=3-$\frac{(a-2)^{2}}{4}$,
當(dāng)$\frac{a-2}{2}$≥2時(shí),即a≥4時(shí),ymin=g(2)=11-2a,
綜上g(a)=$\left\{\begin{array}{l}{3}&{a≤2}\\{3-\frac{(a-2)^{2}}{4}}&{2<a<4}\\{11-2a}&{a≥4}\end{array}\right.$.
點(diǎn)評 本題考查利用待定系數(shù)法求二次函數(shù)的解析式和值域及最值,考查分類討論思想,考查計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-2|x| | B. | $y={x^{\frac{1}{2}}}$ | C. | y=ln|x+1| | D. | y=cosx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a32+a72>a42+a62 | B. | a32+a72<a42+a62 | ||
C. | a32+a72=a42+a62 | D. | a32+a72與a42+a62的大小不確定 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com