19.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}3x-y-6≤0\\ x-y+2≥0\\ x,y≥0\end{array}\right.$,若ax+by(a,b>0)的最大值是12,則a2+b2的最小值是$\frac{36}{13}$.

分析 由約束條件作出可行域,利用線性規(guī)劃知識求出4a+6b=12,即2a+3b=6.再由a2+b2的幾何意義,即2a+3b=6(a>0,b>0)上的點到原點距離的平方,結(jié)合點到直線的距離公式得答案.

解答 解:由約束條件$\left\{\begin{array}{l}3x-y-6≤0\\ x-y+2≥0\\ x,y≥0\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x-y+2=0}\\{3x-y-6=0}\end{array}\right.$,解得A(4,6),
令z=ax+by,化為$y=-\frac{a}x+\frac{z}$,
由圖可知,當(dāng)直線$y=-\frac{a}x+\frac{z}$過A時,直線在y軸上的截距最大,z有最大值為4a+6b=12,
即2a+3b=6.
a2+b2的幾何意義為2a+3b=6(a>0,b>0)上的點到原點距離的平方,
由點到直線的距離公式可得,原點到2a+3b=6(a>0,b>0)上的點的距離的最小值為d=$\frac{|6|}{\sqrt{13}}$,
∴a2+b2的最小值是$\frac{36}{13}$.
故答案為:$\frac{36}{13}$.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知(3$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)n二項展開式中各項系數(shù)之和為64
(1)求n的值;
(2)展開式中的常數(shù)項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如果曲線y=2sin$\frac{x}{2}$的兩條互相垂直的切線交于P點,則P點的坐標(biāo)不可能是( 。
A.(π,π)B.(3π,-π)C.(5π,-π)D.(7π,-π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求下列各函數(shù)的微分:
(1)y=ln(x2+1);
(2)y=e${\;}^{{x}^{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知復(fù)數(shù)z滿足(2+i)z=5i(其中i是虛數(shù)單位,滿足i2=-1),則復(fù)數(shù)z的共軛復(fù)數(shù)在復(fù)平面中對應(yīng)的點在第幾象限( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}中,a1=1,an+1=an-n,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知2sinα+cosα=0,求$\frac{sinα-3cosα}{2sinα+5cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.線段ABP的一端A在x軸上移動,點B在y軸上移動,若AB=a,BP=b,求點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知兩點A(0,2),B(1,0),直線l:3x+y+m=0上一點P滿足PA=$\sqrt{2}$PB,則實數(shù)m的取值范圍是[-14,6].

查看答案和解析>>

同步練習(xí)冊答案