分析 由已知式子可得tanα的值,變形要求的式子可得$\frac{sinα-3cosα}{2sinα+5cosα}$=$\frac{tanα-3}{2tanα+5}$,代值計算可得.
解答 解:∵2sinα+cosα=0,∴tanα=$\frac{sinα}{cosα}$=-$\frac{1}{2}$,
∴$\frac{sinα-3cosα}{2sinα+5cosα}$=$\frac{tanα-3}{2tanα+5}$=$\frac{-\frac{1}{2}-3}{2×(-\frac{1}{2})+5}$=-$\frac{7}{8}$
點評 本題考查同角三角函數(shù)函數(shù)基本關(guān)系,弦化切是解決問題的關(guān)鍵,屬基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2π}{3}$ | B. | $\frac{4π}{3}$ | C. | 2π | D. | $\frac{8π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${∫}_{-π}^{π}$sinxdx=0 | B. | ${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx=2${∫}_{0}^{\frac{π}{2}}$cosxdx | ||
C. | ${∫}_{-2}^{2}$$\sqrt{4-{x}^{2}}$dx=2π | D. | ${∫}_{1}^{2}$$\frac{1}{x}$dx=$\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-2,0,1} | B. | {0,1} | C. | {-2,0} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com