7.若△ABC的三內(nèi)角A、B、C對應(yīng)邊a、b、c滿足2a=b+c,則角A的取值范圍為(0,$\frac{π}{3}$].

分析 由已知a,b,c成等差數(shù)列結(jié)合正弦定理可得,2sinB=sinA+sinC利用和差化積公式可得,2sinA=2sin$\frac{B-C}{2}$,再利用半角公式及誘導進行化簡,然后結(jié)合三角函數(shù)的性質(zhì)即可得解.

解答 解:∵2a=b+c,
由正弦定理可得,2sinA=sinB+sinC,
則2sinA=2sin$\frac{B+C}{2}$cos$\frac{B-C}{2}$,
∴2sin$\frac{A}{2}$cos$\frac{A}{2}$=sin$\frac{π-A}{2}$cos$\frac{B-C}{2}$,
∴2sin$\frac{A}{2}$cos$\frac{A}{2}$=cos$\frac{A}{2}$cos$\frac{B-C}{2}$,
∴2sin$\frac{A}{2}$=cos$\frac{B-C}{2}$,
∵-1≤cos$\frac{B-C}{2}$≤1且sin$\frac{A}{2}$>0,
從而可得,0<sin$\frac{A}{2}$≤$\frac{1}{2}$,
∴0<$\frac{A}{2}$≤$\frac{π}{6}$,
∴0<A≤$\frac{π}{3}$.
故答案為:(0,$\frac{π}{3}$].

點評 本題主要考查了正弦定理的變形形式a=2RsinA,b=2RsinB,c=2RsinC的應(yīng)用,和差角公式的變形及誘導公式的應(yīng)用,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知f(x)=$\left\{\begin{array}{l}{2(x>1)}\\{-1(x≤1)}\end{array}\right.$,則不等式x+2xf(x+1)>5的解集為( 。
A.(1,+∞)B.(-∞,-5)∪(1,+∞)C.(-∞,-5)∪(0,+∞)D.(-5,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.某書店的銷售剛剛上市的某知名品牌的高三數(shù)學單元卷,按事先限定的價格進行5天試銷,每種單價試銷1天,得到如表數(shù)據(jù):
單價x(元)1819202122
銷量y(冊)6150504845
(1)求試銷5天的銷售量的方差和y對x的回歸直線方程;
(2)預(yù)計今后的銷售中,銷售量與單價服從(1)中的回歸方程,已知每冊單元卷的成本是14元,為了獲得最大利潤,該單元卷的單價應(yīng)定為多少元?
(附:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-x)({y}_{i}-y)}{\sum_{i=1}^{n}({x}_{i}-x)}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}\overline{x}$))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,P為雙曲線上任一點.且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的最小值的取值范圍是[-$\frac{3}{4}$c2,-$\frac{1}{2}$c2],則該雙曲線的離心率的取值范圍為$\sqrt{2}$≤e≤2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥CD,∠BCD=90°.
(1)求證:BC⊥平面PDC;
(2)求點A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期1月10日2月10日3月10日4月10日5月10日6月10日
晝夜溫差x(℃)1011131286
就診人數(shù)y(人)222529261612
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若函數(shù)f(x)=x2+a|x-$\frac{1}{2}$|在[0,+∞)上單調(diào)遞增,則實數(shù)a的取值范圍是( 。
A.[-2,0]B.[-4,0]C.[-1,0]D.[-$\frac{1}{2}$,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若函數(shù)f(x)=2sin(ωx-$\frac{π}{3}$)(0<ω<π),且f(2+x)=f(2-x),則ω的值為$\frac{5π}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知數(shù)列{an}滿足${a_1}=1,{a_n}{a_{n+1}}={2^n}$(n∈N*),則a2n=2n

查看答案和解析>>

同步練習冊答案