【題目】在棱長(zhǎng)為2的正方體中,設(shè)是棱的中點(diǎn).
(1)求證:;
(2)求證:平面;
(3)求三棱錐的體積.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)
【解析】
試題本題考查了空間中的垂直與平行的判斷與性質(zhì)的應(yīng)用問(wèn)題,也考查了求幾何體的體積的問(wèn)題,(1)通過(guò)證明平面,得出;(2)通過(guò)的中位線(xiàn)證明線(xiàn)線(xiàn)平行,再證明線(xiàn)面平行;(3)點(diǎn)到平面的距離等于點(diǎn)到平面的距離,利用等積法求出三棱錐的體積.
試題解析:解:(1)【證明】連接BD,AE.因四邊形ABCD為正方形,故,
因底面ABCD,面ABCD,故,又,
故平面,平面,故.
(2)連接,設(shè),連接,
則為中點(diǎn),而為的中點(diǎn),故為三角形的中位線(xiàn),
,平面,平面,故平面.
(3)由(2)知,點(diǎn)A到平面的距離等于C到平面的距離,
故三棱錐的體積,
而,
三棱錐的體積為.…12分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 設(shè)函數(shù)f(x)=(x-1)2+bln x,其中b為常數(shù).
(1)當(dāng)b>時(shí),判斷函數(shù)f(x)在定義域上的單調(diào)性;
(2)若函數(shù)f(x)有極值點(diǎn),求b的取值范圍及f(x)的極值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲,乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,其質(zhì)量按測(cè)試指標(biāo)劃分:指標(biāo)大于或等于100為優(yōu)品,大于等于90且小于100為合格品,小于90為次品,現(xiàn)隨機(jī)抽取這兩臺(tái)車(chē)床生產(chǎn)的零件各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:
測(cè)試指標(biāo) | [85,90) | [90,95) | [95,100) | [100,105) | [105,110) |
機(jī)床甲 | 8 | 12 | 40 | 32 | 8 |
機(jī)床乙 | 7 | 18 | 40 | 29 | 6 |
(1)試分別估計(jì)甲機(jī)床、乙機(jī)床生產(chǎn)的零件為優(yōu)品的概率;
(2)甲機(jī)床生產(chǎn)一件零件,若是優(yōu)品可盈利160元,合格品可盈利100元,次品則虧損20元;假設(shè)甲機(jī)床某天生產(chǎn)50件零件,請(qǐng)估計(jì)甲機(jī)床該天的日利潤(rùn)(單位:元);
(3)從甲、乙機(jī)床生產(chǎn)的零件指標(biāo)在[90,95)內(nèi)的零件中,采用分層抽樣的方法抽取5件,從這5件中任選2件進(jìn)行質(zhì)量分析,求這2件都是乙機(jī)床生產(chǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若曲線(xiàn)在處的切線(xiàn)的方程為,求實(shí)數(shù)的值;
(2)設(shè),若對(duì)任意兩個(gè)不等的正數(shù),都有恒成立,求實(shí)數(shù)的取值范圍;
(3)若在上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且a+b+c=8.
(1)若a=2,b=,求cosC的值;
(2)若sinAcos2+sinB·cos2=2sinC,且△ABC的面積S=sinC,求a和b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用二分法求函數(shù)的一個(gè)正零點(diǎn)的近似值(精確度為0.1)時(shí),依次計(jì)算得到如下數(shù)據(jù):f(1)=–2,f(1.5)=0.625,f(1.25)≈–0.984,f(1.375)≈–0.260,關(guān)于下一步的說(shuō)法正確的是( )
A. 已經(jīng)達(dá)到精確度的要求,可以取1.4作為近似值
B. 已經(jīng)達(dá)到精確度的要求,可以取1.375作為近似值
C. 沒(méi)有達(dá)到精確度的要求,應(yīng)該接著計(jì)算f(1.4375)
D. 沒(méi)有達(dá)到精確度的要求,應(yīng)該接著計(jì)算f(1.3125)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某化工廠一種溶液的成品,生產(chǎn)過(guò)程的最后工序是過(guò)濾溶液中的雜質(zhì),過(guò)濾初期溶液含雜質(zhì)為2%,每經(jīng)過(guò)一次過(guò)濾均可使溶液雜質(zhì)含量減少,記過(guò)濾次數(shù)為x()時(shí)溶液雜質(zhì)含量為y.
(1)寫(xiě)出y與x的函數(shù)關(guān)系式;
(2)按市場(chǎng)要求,出廠成品雜質(zhì)含量不能超過(guò)0.1%,問(wèn)至少經(jīng)過(guò)幾次過(guò)濾才能使產(chǎn)品達(dá)到市場(chǎng)要求?(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分14分)
已知, 為橢圓的左、右頂點(diǎn), 為其右焦點(diǎn), 是橢圓上異于, 的動(dòng)點(diǎn),且面積的最大值為.
(Ⅰ)求橢圓的方程及離心率;
(Ⅱ)直線(xiàn)與橢圓在點(diǎn)處的切線(xiàn)交于點(diǎn),當(dāng)直線(xiàn)繞點(diǎn)轉(zhuǎn)動(dòng)時(shí),試判斷以
為直徑的圓與直線(xiàn)的位置關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓(a>b>0)的離心率,過(guò)點(diǎn)A(0,-b)和B(a,0)的直線(xiàn)與原點(diǎn)的距離為.
(1)求橢圓的方程.
(2)已知定點(diǎn)E(-1,0),若直線(xiàn)y=kx+2(k≠0)與橢圓交于C、D兩點(diǎn).問(wèn):是否存在k的值,使以CD為直徑的圓過(guò)E點(diǎn)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com