2.刪除正整數(shù)數(shù)列1,2,3,…中的所有完全平方數(shù),得到一個新數(shù)列.這個新數(shù)列的第2005項是(  )
A.2048B.2049C.2050D.2051

分析 由題意可得,這些數(shù)可以寫為:12,2,3,22,5,6,7,8,32…,第k個平方數(shù)與第k+1個平方數(shù)之間有2k個正整數(shù),即可得出.

解答 解:由題意可得,這些數(shù)可以寫為:12,2,3,22,5,6,7,8,32…,
第k個平方數(shù)與第k+1個平方數(shù)之間有2k個正整數(shù),
而數(shù)列12,2,3,22,5,6,7,8,32…452共有2025項,去掉45個平方數(shù)后,還剩余1980個數(shù),
所以去掉平方數(shù)后第2005項應在2025后的第25個數(shù),即是原來數(shù)列的第2050項,即為2050.
故選:C.

點評 本題考查了數(shù)列通項公式、平方數(shù),考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.若曲線f(x)=ax2+$\frac{1}{2}$x+lnx在點(1,f(1))處的切線與y=$\frac{7}{2}$x-1平行,則a=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知命題p:?x∈R,x+1≤0,命題q:?x∈R,x2+mx+1>0恒成立.若p∧q為假命題,則實數(shù)m的取值范圍為(  )
A.m≥2B.m≤-2C.m≤-2或x≥2D.-2≤m≤2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知直線l:4x-3y-12=0與圓(x-2)2+(y-2)2=5交于A,B兩點,且與x軸、y軸分別交于C,D兩點,則( 。
A.2|CD|=5|AB|B.8|CD|=4|AB|C.5|CD|=2|AB|D.3|CD|=8|AB|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知集合A={x|1<2${\;}^{{x^2}-2x-3}}$<32},B={x|log2(x+3)<3}.
(1)求(∁RA)∩B;
(2)若(a,a+2)⊆B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知在平行四邊形ABCD中,點M、N分別是BC、CD的中點,如果$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AD}$=$\overrightarrow b$,那么向量$\overrightarrow{MN}$=( 。
A.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b$B.$-\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b$C.$\overrightarrow a+\frac{1}{2}\overrightarrow b$D.$-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù) f(x)=$\frac{a}{3}$x3+$\frac{1}{2}$x2( a∈R,a≠0).
(1)求 f ( x )的單調(diào)區(qū)間;
(2)當 x∈[0,1]時,經(jīng)過函數(shù) f ( x )的圖象上任意一點的切線的傾斜角 θ 總在區(qū)間[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π)內(nèi),試求實數(shù) a 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若函數(shù)f(x)=-x2+2ax+1在(1,+∞)上是減函數(shù),則a的取值范圍是( 。
A.(-∞,1]B.(-∞,-1]C.[1,+∞)D.[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知全集U={-2,-1,0,1,2},集合A={-2,-1,1,2},則∁UA={0}.

查看答案和解析>>

同步練習冊答案