已知公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn,S4=16,a22=a1a5
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
1
anan+1
,求數(shù)列{bn}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)設(shè)等差數(shù)列{an}的公差為d≠0,由S4=16,a22=a1a5.可得
4a1+
4×3
2
d=16
(a1+d)2=a1(a1+4d)
,解得即可;
(2)由(1)可得:bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
.利用“裂項(xiàng)求和”即可得出.
解答: 解:(1)設(shè)等差數(shù)列{an}的公差為d≠0,∵S4=16,a22=a1a5
4a1+
4×3
2
d=16
(a1+d)2=a1(a1+4d)
,解得
a1=1
d=2

∴an=a1+(n-1)d=2n-1.
(2)由(1)可得:bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

∴數(shù)列{bn}的前n項(xiàng)和Tn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]
=
1
2
(1-
1
2n+1
)
=
n
2n+1
點(diǎn)評:本題考查了等差數(shù)列的通項(xiàng)公式和“裂項(xiàng)求和”方法,考查了推理能力和計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=1+
2
3x-1
( 。
A、是偶函數(shù)
B、是奇函數(shù)
C、既是奇函數(shù)又是偶函數(shù)
D、既不是奇函數(shù)也不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2x-1,則f(x+1)等于( 。
A、2x-1B、x+1
C、2x+1D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x|-2<x<5},集合N={x|2-t<x<2t+1},t∈R,若M∪N=M,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2a-2<x<a},B={x|1<x<2},且A?∁RB,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直線l:3x-y-1=0上求一點(diǎn)P,使得:
(1)P到A(4,1)和B(0,4)的距離之差最大;
(2)P到A(4,1)和C(3,4)的距離之和最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-
1
ax
+1(a>0,且a≠1).
(1)求函數(shù)的定義域和值域;
(2)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一圓的方程為x2+y2-6x-8y=0,設(shè)該圓過點(diǎn)(3,5)的最長弦和最短弦分別為AC和BD,求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a≥0,解關(guān)于x的不等式
ax-1
x2-2
≥0.

查看答案和解析>>

同步練習(xí)冊答案