16.圓的方程為x2+y2+kx+2y-k-1=0,當(dāng)圓面積最小時,圓心坐標(biāo)為(1,-1).

分析 利用圓的一般方程中圓心坐標(biāo)和半徑公式,結(jié)合配方法能求出結(jié)果.

解答 解:∵圓的方程為x2+y2+kx+2y-k-1=0,
∴r=$\frac{1}{2}\sqrt{{k}^{2}+4+4k+4}$=$\frac{1}{2}\sqrt{(k+2)^{2}+4}$≥1.
∴k=-2時,圓面積最。
此時圓心坐標(biāo)為:(1,-1).
故答案為:(1,-1).

點評 本題考查圓心坐標(biāo)的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意圓的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列說法錯誤的是( 。
A.命題“若x2-4x+3=0,則x=3”的逆否命題是:“若x≠3,則x2-4x+3≠0”
B.“x>1”是“|x|>0”的充分不必要條件
C.若p且q為假命題,則p,q至少有一個假命題
D.命題p:“存在x∈R使得x2+x+1<0,”則¬p:“對于任意x∈R,均有x2+x+1>0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{x-c}{{x}^{2}+1}$,其中c為常數(shù),且函數(shù)f(x)是定義在(-1,1)上的奇函數(shù).
(1)求c的值;
(2)證明函數(shù)f(x)在(-1,1)上是單調(diào)遞增函數(shù);
(3)求關(guān)于m的不等式:f(2m-1)<f(m+$\frac{1}{2}$)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知橢圓C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1,圓G:(x-1)2+y2=1若P是橢圓上任意一點,過點P作圓G的切線,切點為Q,過點P作橢圓C右準(zhǔn)線的垂線,垂足為H,則$\frac{PQ}{PH}$的取值范圍為$[\frac{\sqrt{3}}{6},\frac{\sqrt{15}}{12}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知f(x+1)=x2-2x+2,則f(0)=0,f(x)=x2-4x+5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.三棱錐A-BCD中,E是BC的中點,AB=AD,BD⊥DC,求證:AE⊥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若拋物線y2=2px(p≠0)的準(zhǔn)線與圓x2+y2+2x-3=0相切,則p的值為( 。
A.2B.±2C.±6D.6或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.將直線y=3x繞原點逆時針方向旋轉(zhuǎn)45°,再向右平移1個單位長度,所得到的直線方程為y=-2x+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)是定義在R上的偶函數(shù),且對任意x1,x2∈[0,+∞),x1≠x2,都有(x1-x2)(f(x1)-f(x2))<0,則( 。
A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(-2)<f(1)

查看答案和解析>>

同步練習(xí)冊答案