分析 確定曲線(y-$\sqrt{9-{x}^{2}}$)(x+$\sqrt{9-{y}^{2}}$)=0表示圓x2+y2=9在第二象限的部分,包括與坐標(biāo)軸的交點,
解答 解:曲線(y-$\sqrt{9-{x}^{2}}$)(x+$\sqrt{9-{y}^{2}}$)=0表示圓x2+y2=9在第二象限的部分,包括與坐標(biāo)軸的交點,
因為直線y=-x+m與曲線(y-$\sqrt{9-{x}^{2}}$)(x+$\sqrt{9-{y}^{2}}$)=0恰有一個公共點,
所以直線經(jīng)過(0,3),(-3,0)時,m取得最大與最小,
所以-3≤m≤3.
點評 本題考查直線與圓的位置關(guān)系,考查學(xué)生分析解決問題的能力,比較基礎(chǔ).
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{7}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\frac{{\sqrt{5}}}{25}$ | C. | $\frac{1}{25}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com