設(shè)函數(shù)f(x)=sin2x+2sinxcosx+3cos2x
(Ⅰ)若x∈R,求函數(shù)f(x)的最小正周期
(Ⅱ)在△ABC中,a,b,c分別是內(nèi)角A、B、C的 對邊,若bsinA=
3
accosB,求f(B)的值.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)的周期性及其求法,余弦定理
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì),解三角形
分析:(Ⅰ)首先通過三角恒等變換,把函數(shù)關(guān)系式變形成正弦型函數(shù),進(jìn)一步利用公式求出函數(shù)的最小正周期.
(Ⅱ)利用正弦定理,首先求出角B的值,進(jìn)一步利用函數(shù)的關(guān)系式求出結(jié)果.
解答: 解:(Ⅰ)f(x)=sin2x+2sinxcosx+3cos2x
=sin2x+2cos2x+1
=sin2x+cos2x+2
=
2
sin(2x+
π
4
)+2

所以函數(shù)的最小正周期為:T=
2
;
(Ⅱ)在△ABC中,a,b,c分別是內(nèi)角A、B、C的 對邊,若bsinA=
3
acosB,
利用正弦定理得:
a
sinA
=
b
3
cosB
=
b
sinB
,
所以:
3
cosB=sinB

整理得:tanB=
3
,
由于:0<B<π,
則:B=
π
3
;
f(B)=
2
sin(2B+
π
4
)+2

=
2
sin(
3
+
π
4
)+2

=
3+
3
2
點(diǎn)評:本題考查的知識要點(diǎn):三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)的性質(zhì)周期性的應(yīng)用,正弦定理得應(yīng)用,及相關(guān)的運(yùn)算問題.屬于基礎(chǔ)題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知R是實(shí)數(shù)集,M={x|
2
x
<1},N={y|y=
x-1
},則(CRM)∩N=( 。
A、(1,2)
B、[1,2]
C、[1,2)
D、[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知⊙O的直徑AB=3,點(diǎn)C為⊙O上異于A、B的一點(diǎn),VC⊥平面ABC,且VC=2,點(diǎn)M為線段VB的中點(diǎn).(Ⅰ)求證:BC⊥平面VAC
(Ⅱ)若AC=1,求直線AM與平面VAC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平行四邊形ABCD中,
BD
=3
ED
,AE的延長線與CD交于點(diǎn)F,若
AC
=
a
,
BD
=
b
,則
AF
=( 。
A、
1
4
a
+
1
2
b
B、
3
4
a
+
1
4
b
C、
1
2
a
+
1
4
b
D、
1
4
a
+
3
4
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

貴州省2014年全省高中男生身高統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:全省100000名男生的身高服從正態(tài)分布N(168,16).現(xiàn)從某學(xué)校高三年級男生中隨機(jī)抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于160cm和184cm之間,將測量結(jié)果按如下方式分成6組:第1組[160,164),第2組[164,168),…,第6組[180,184],如圖是按上述分組方法得到的頻率分布直方圖.
(1)求這50名男生身高在172cm以上(含172cm)的人數(shù);
(2)求全省高中男生身高排名(從高到低) 前130名中最低身高是多少;
(3)在這50名男生身高在172cm以上(含172cm)的人中任意抽取2人,將該2人中身高排名(從高到低)在全省前130名的人數(shù)記為X,求X的數(shù)學(xué)期望.
參考數(shù)據(jù):
若X~N(μ,σ2),則P(μ-σ<X≤μ+σ)=0.6826,
P(μ-2σ<X≤μ+2σ)=0.9544,
P(μ-3σ<X≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從高h(yuǎn)米的小島看正東方向有一只船俯角為30°,看正南方向有一只船俯角為45°,則此時(shí)兩船間的距離為( 。
A、2h米
B、
2
h米
C、
3
h米
D、2
2
h米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)方程2x3-6x2+3=0有幾個(gè)解?如果有解,全部解的和為多少?
(2)探究方程2x3-6x2+5=0,2x3-6x2+8=0的全部解的和,你由此可以得出什么結(jié)論?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sinx=
1-a
2
,x∈[
π
3
,π]上有兩個(gè)實(shí)數(shù)根,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐S-ABCD的底面是邊長為2的正方形,每條側(cè)棱的長都是底面邊長的
2
倍,P為側(cè)棱SD上的點(diǎn).
(Ⅰ)當(dāng)SP:PD為何值時(shí),直線SD⊥平面PAC,
(Ⅱ)在(1)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC,若存在,求SE:EC的值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案