分析 由g(x)=3x2+2ax-1判斷知△=4a2+12>0,得a的范圍,由函數(shù)g(x)=x3+ax2-x+2的單調(diào)遞減區(qū)間為(-$\frac{1}{3}$,1),則g(x)=3x2+2ax-1的根為$-\frac{1}{3}$和1,列出方程求解即可.
解答 解:函數(shù)的導(dǎo)數(shù)為g(x)=3x2+2ax-1判斷知△=4a2+12>0,得a∈R,g(x)=x3+ax2-x+2的單調(diào)遞減區(qū)間為(-$\frac{1}{3}$,1),g(x)=3x2+2ax-1的根為$-\frac{1}{3}$和1,則-$\frac{1}{3}$+1=-$\frac{2}{3}$a,得a=-1.
故答案為:-1.
點(diǎn)評(píng) 本題考察了函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,二次函數(shù)的性質(zhì),是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8}{81}$ | B. | $\frac{16}{81}$ | C. | $\frac{8}{27}$ | D. | $\frac{32}{81}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | 57 | C. | 75 | D. | 480 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com