18.已知g(x)=x3+ax2-x+2的單調(diào)遞減區(qū)間為(-$\frac{1}{3}$,1),則實(shí)數(shù)a=-1.

分析 由g(x)=3x2+2ax-1判斷知△=4a2+12>0,得a的范圍,由函數(shù)g(x)=x3+ax2-x+2的單調(diào)遞減區(qū)間為(-$\frac{1}{3}$,1),則g(x)=3x2+2ax-1的根為$-\frac{1}{3}$和1,列出方程求解即可.

解答 解:函數(shù)的導(dǎo)數(shù)為g(x)=3x2+2ax-1判斷知△=4a2+12>0,得a∈R,g(x)=x3+ax2-x+2的單調(diào)遞減區(qū)間為(-$\frac{1}{3}$,1),g(x)=3x2+2ax-1的根為$-\frac{1}{3}$和1,則-$\frac{1}{3}$+1=-$\frac{2}{3}$a,得a=-1.
故答案為:-1.

點(diǎn)評(píng) 本題考察了函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,二次函數(shù)的性質(zhì),是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ex-ax-a(其中a∈R,e=2.71828…為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的最小值;
(Ⅱ)討論f(x)的單調(diào)性;
(Ⅲ)設(shè)過曲線h(x)=-f(x)-(a+1)x+2a上任意一點(diǎn)處的切線l1,總存在過曲線g(x)=(x-1)a+2cosx上一點(diǎn)處的切線l2,使得l1⊥l2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)X~B(4,p),其中0<p<$\frac{1}{2}$,且P(X=2)=$\frac{8}{27}$,那么P(X=1)=( 。
A.$\frac{8}{81}$B.$\frac{16}{81}$C.$\frac{8}{27}$D.$\frac{32}{81}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在某次數(shù)學(xué)趣味活動(dòng)中,每位參加者需從所有的“三位遞增數(shù)”中隨機(jī)抽取1個(gè)數(shù),且只能抽取一次.(若n是一個(gè)三位正整數(shù),且n的個(gè)位數(shù)字大于十位數(shù)字,十位數(shù)字大于百位數(shù)字,則稱n為“三位遞增數(shù)”如137,359,567等)得分規(guī)則如下:若抽取的“三位遞增數(shù)”的三個(gè)數(shù)字之積不能被5整除,參加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.已知某同學(xué)甲參加活動(dòng),求甲得分X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)$f(x)=sin(2ωx-\frac{π}{6})$將其圖象向左平移$\frac{π}{4}$個(gè)單位得到函數(shù)g(x)圖象,且函數(shù)g(x)圖象關(guān)于y軸對(duì)稱,若ω是使變換成立的最小正數(shù),則ω=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.計(jì)算$\frac{2+2i}{i}+\frac{1+i}{1-i}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)$f(x)=\left\{\begin{array}{l}(1-2a)x+5(x≤12)\\{a^{x-13}}(x>12)\end{array}\right.$,若數(shù)列{an}滿足an=f(n),n∈N+,且對(duì)任意的兩個(gè)正整數(shù)m,n(m≠n),都有(m-n)(am-an)<0,則實(shí)數(shù)a的取值范圍是($\frac{1}{2}$,$\frac{2}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)集合An={1,2,3,…,n}(n∈N*,n≥3),記An中的元素組成的非空子集為$A_i^'$(i∈N*,i=1,2,3,…,2n-1),對(duì)于?i∈{1,2,3,…,2n-1},$A_i^'$中的最小元素和為Sn,則S5=( 。
A.32B.57C.75D.480

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=sinxcosx-$\sqrt{3}$cos(x+π)cosx(x∈R).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若函數(shù)y=f(x)的圖象按$\overrightarrow$=($\frac{π}{4}$,$\frac{\sqrt{3}}{2}$)平移后得到函數(shù)y=g(x)的圖象,求y=g(x)在[0,$\frac{π}{4}$]上的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案