【題目】如圖ABCD是平面四邊形,∠ADB=∠BCD=90°,AB=4,BD=2.
(Ⅰ)若BC=1,求AC的長;
(Ⅱ)若∠ACD=30°,求tan∠BDC的值.
【答案】解:(I)設∠ABD=α,∠CBD=β.
在Rt△ABD中,cosα= = = ,∴α= .
在Rt△CBD中,cosβ= = ,∴β= .
∴α+β= .
在△ABC中,AC2= =21.
∴AC= .
(II)設∠BDC=θ,在△ACD中, = ,化為AC= cosθ.
在△ABC中, = ,化為:AC= cos(60°﹣θ),
∴ cosθ═ cos(60°﹣θ),化為:3cosθ=2cos(60°﹣θ),
∴3cosθ=cosθ+ sinθ,
∴tanθ= .
【解析】(I)設∠ABD=α,∠CBD=β.在Rt△ABD中,cosα= ,可得α.在Rt△CBD中,cosβ= ,可得β.在△ABC中,利用余弦定理即可得出.(II)設∠BDC=θ,在△ACD中,由正弦定理可得: = ,化為AC= cosθ.同理在△ABC中,利用正弦定理可得:AC= cos(60°﹣θ),化簡解出即可得出.
【考點精析】關于本題考查的正弦定理的定義和余弦定理的定義,需要了解正弦定理:;余弦定理:;;才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的短軸長為2,離心率e= .
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=kx+m與橢圓交于不同的兩點A,B,與圓x2+y2= 相切于點M.
(i)證明:OA⊥OB(O為坐標原點);
(ii)設λ= ,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.
(Ⅰ)求這4個人中恰有2人去參加甲游戲的概率;
(Ⅱ)用X,Y分別表示這4個人中去參加甲、乙游戲的人數(shù),記ξ=|X﹣Y|,求隨機變量ξ的分布列與數(shù)學期望Eξ.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學城校區(qū)與本部校區(qū)之間的駕車單程所需時間為,只與道路暢通狀況有關,對其容量為500的樣本進行統(tǒng)計,結果如下:
(分鐘) | 25 | 30 | 35 | 40 |
頻數(shù)(次) | 100 | 150 | 200 | 50 |
以這500次駕車單程所需時間的頻率代替某人1次駕車單程所需時間的概率.
(1)求的分布列與;
(2)某天有3位教師獨自駕車從大學城校區(qū)返回本部校區(qū),記表示這3位教師中駕車所用時間少于的人數(shù),求的分布列與;
(3)下周某天張老師將駕車從大學城校區(qū)出發(fā),前往本部校區(qū)做一個50分鐘的講座,結束后立即返回大學城校區(qū),求張老師從離開大學城校區(qū)到返回大學城校區(qū)共用時間不超過120分鐘的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,其中左焦點(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x2+y2=1上,求m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=1+x﹣ + ﹣ ﹣…+ ﹣ + ,則下列結論正確的是( )
A.f(x)在(0,1)上恰有一個零點
B.f(x)在(0,1)上恰有兩個零點
C.f(x)在(﹣1,0)上恰有一個零點
D.f(x)在(﹣1,0)上恰有兩個零點
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中正確的是( )
A.若ξ服從正態(tài)分布N(0,2),且P(ξ>2)=0.4,則P(0<ξ<2)=0.2
B.x=1是x2﹣x=0的必要不充分條件
C.直線ax+y+2=0與ax﹣y+4=0垂直的充要條件為a=±1
D.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設a>0,b>0( )
A.若lna+2a=lnb+3b,則a>b
B.2a+2a=2b+3b,則a<b
C.若lna﹣2a=lnb﹣3b,則a>b
D.2a﹣2a=2b﹣3b,則a<b
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com