【題目】已知橢圓的離心率為,其中左焦點(diǎn)(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)M在圓x2+y2=1上,求m的值.
【答案】19. 解①
②設(shè)
由
又在上
或
經(jīng)檢驗(yàn)解題
或
【解析】
本試題主要是考查了橢圓方程的求解,以及直線與橢圓的位置關(guān)系的運(yùn)用。
(1)由題意,得得到a,b,c的值。得到橢圓的方程。
(2)設(shè)點(diǎn)A、B的坐標(biāo)分別為(x1,y1),(x2, y2),線段AB的中點(diǎn)為M(x0,y0),
由消y得,3x2+4mx+2m2-8=0結(jié)合韋達(dá)定理,和判別式得到參數(shù)m值。
解:(1) 由題意,得………………………………………………3分
解得∴橢圓C的方程為.…………………………………………6分
(2) 設(shè)點(diǎn)A、B的坐標(biāo)分別為(x1,y1),(x2, y2),線段AB的中點(diǎn)為M(x0,y0),
由消y得,3x2+4mx+2m2-8=0,……………………………………………8分
Δ=96-8m2>0,∴-2<m<2.
∴.………………………………………12分
∵點(diǎn)M(x0,y0)在圓x2+y2=1上,
,.………………………………………………… 14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,若關(guān)于x的方程f2(x)﹣bf(x)+c=0(b,c∈R)有8個(gè)不同的實(shí)數(shù)根,則b+c的取值范圍為( )
A.(﹣∞,3)
B.(0,3]
C.[0,3]
D.(0,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓C: =1(a>b>0)的中心在原點(diǎn),焦點(diǎn)在x軸上,焦距為2,且與橢圓x2+ =1有相同離心率,直線l:y=kx+m與橢圓C交于不同的A,B兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若在橢圓C上存在點(diǎn)Q,滿足 ,(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)λ取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓錐曲線 E: .
(I)求曲線 E的離心率及標(biāo)準(zhǔn)方程;
(II)設(shè) M(x0 , y0)是曲線 E上的任意一點(diǎn),過(guò)原點(diǎn)作⊙M:(x﹣x0)2+(y﹣y0)2=8的兩條切線,分別交曲線 E于點(diǎn) P、Q.
①若直線OP,OQ的斜率存在分別為k1 , k2 , 求證:k1k2=﹣ ;
②試問(wèn)OP2+OQ2是否為定值.若是求出這個(gè)定值,若不是請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖ABCD是平面四邊形,∠ADB=∠BCD=90°,AB=4,BD=2.
(Ⅰ)若BC=1,求AC的長(zhǎng);
(Ⅱ)若∠ACD=30°,求tan∠BDC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四面體P﹣ABC中,PA=4,AC=2 ,PB=BC=2 ,PA⊥平面PBC,則四面體P﹣ABC的外接球半徑為( )
A.2
B.2
C.4
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且對(duì)任意正整數(shù)n都有an是n與Sn的等差中項(xiàng),bn=an+1.
(1)求證:數(shù)列{bn}是等比數(shù)列,并求出其通項(xiàng)bn;
(2)若數(shù)列{Cn}滿足Cn= 且數(shù)列{C }的前n項(xiàng)和為T(mén)n , 證明Tn<2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四面體P﹣ABC中,PA=4,AC=2 ,PB=BC=2 ,PA⊥平面PBC,則四面體P﹣ABC的外接球半徑為( )
A.2
B.2
C.4
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等比數(shù)列{an}中,a2=3,a5=81,bn=1+2log3an .
(1)求數(shù)列{bn}的前n項(xiàng)的和;
(2)已知數(shù)列 的前項(xiàng)的和為Sn , 證明: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com