(12分) 已知函數(shù)。
(1)求函數(shù)y=的零點(diǎn);
(2) 若y=的定義域?yàn)閇3,9], 求的最大值與最小值。

(1)2.(2)=1, ymax=3.

解析試題分析:(1)令=0,得x-1=1,即x=2,所以函數(shù)的零點(diǎn)是2.
( 2)因?yàn)楹瘮?shù)在[3,9]上是增函數(shù),所以x=3時(shí),=1, x=9時(shí),ymax=3.
考點(diǎn):本題考查函數(shù)的零點(diǎn)和函數(shù)的最值。
點(diǎn)評(píng):函數(shù)的零點(diǎn)、對(duì)應(yīng)方程的根、函數(shù)與x軸交點(diǎn)的橫坐標(biāo)三者是等價(jià)的。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分) 已知是方程的兩個(gè)不等實(shí)根,函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/16/b/1vwmh2.png" style="vertical-align:middle;" />.
⑴當(dāng)時(shí),求函數(shù)的值域;
⑵證明:函數(shù)在其定義域上是增函數(shù);
⑶在(1)的條件下,設(shè)函數(shù),
若對(duì)任意的,總存在,使得成立,
求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)已知函數(shù)

(1)作出函數(shù)的圖象;
(2)寫出函數(shù)的單調(diào)區(qū)間;
(3)判斷函數(shù)的奇偶性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知函數(shù),,設(shè).
(1)求的單調(diào)區(qū)間;
(2)若以圖象上任意一點(diǎn)為切點(diǎn)的切線的斜率
恒成立,求實(shí)數(shù)的最小值.
(3)是否存在實(shí)數(shù),使得函數(shù)的圖象與的圖
象恰好有四個(gè)不同的交點(diǎn)?若存在,求出的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),求:
(1)函數(shù)的定義域。 (2)求使的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分)已知在定義域上是奇函數(shù),且在上是減函數(shù),圖像如圖所示.
(1)化簡(jiǎn):
(2)畫出函數(shù)上的圖像;
(3)證明:上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù).
(1)求證:函數(shù)上是單調(diào)遞增函數(shù);
(2)當(dāng)時(shí),求函數(shù)在上的最值;
(3)函數(shù)上恒有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分)已知函數(shù)為奇函數(shù);
(1)求以及m的值;
(2)在給出的直角坐標(biāo)系中畫出的圖象;

(3)若函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/66/8/1cmex3.png" style="vertical-align:middle;" />,對(duì)于任意的,都有,且當(dāng)時(shí),,若.
(1)求證:為奇函數(shù);
(2)求證:上的減函數(shù);
(3)求函數(shù)在區(qū)間上的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案