18.已知向量$\overrightarrow m=(a,-2),\overrightarrow n=(a-3,1)$,且$\overrightarrow{m}$∥$\overrightarrow{n}$,則實(shí)數(shù)a=( 。
A.1B.6C.2或1D.2

分析 根據(jù)平面向量的共線定理,列出方程求解即可.

解答 解:向量$\overrightarrow m=(a,-2),\overrightarrow n=(a-3,1)$,且$\overrightarrow{m}$∥$\overrightarrow{n}$,
∴a-(-2)•(a-3)=0,
解得a=2.
故選:D.

點(diǎn)評(píng) 本題考查了平面向量的坐標(biāo)表示與共線定理的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知復(fù)數(shù)z=$\frac{a+i}{2}$(a∈R)且z的實(shí)部與虛部互為相反數(shù),則a的值為(  )
A.1B.aC.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知A,B是單位圓上的兩點(diǎn),O為圓心,且∠AOB=120°,MN是圓O的一條直徑,點(diǎn)C在圓內(nèi),且滿足$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),則$\overrightarrow{CM}$•$\overrightarrow{CN}$的最小值為( 。
A.-$\frac{1}{2}$B.-$\frac{1}{4}$C.-$\frac{3}{4}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過(guò)點(diǎn)A(0,-1),且離心率為$\frac{\sqrt{2}}{2}$.
(1)求a的值;
(2)經(jīng)過(guò)點(diǎn)(1,1),且斜率為k的直線與橢圓E交于不同的兩點(diǎn)P,Q(均異于點(diǎn)A),證明:直線AP與AQ的斜率之和為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知命題p為真命題,命題q為假命題,則下列命題為真命題的是( 。
A.¬pB.p∧qC.¬p∨qD.p∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.有甲、乙兩個(gè)班,進(jìn)行數(shù)學(xué)考試,按學(xué)生考試及格與不及格統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表.能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為成績(jī)及格與班級(jí)有關(guān)系?
不及格及格總計(jì)
甲班103545
乙班73845
總計(jì)177390
K2=$\frac{n(ad-bc)^{2}}{(a+d)(c+d)(a+c)(b+d)}$
依據(jù)表
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
   k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)f(x)的定義域?yàn)閷?shí)數(shù)R,f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^x}-1,-1≤x<0\\{log_2}(x+1),0≤x<3.\end{array}$對(duì)任意的x∈R都有f(x+2)=f(x-2).若在區(qū)間[-5,3]上函數(shù)g(x)=f(x)-mx+m恰好有三個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.$(-\frac{1}{2},-\frac{1}{6})$B.$[-\frac{1}{2},-\frac{1}{6})$C.$(-\frac{1}{2},-\frac{1}{3})$D.$[-\frac{1}{2},-\frac{1}{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知(x+$\frac{1}{2}$)n的展開(kāi)式中前三項(xiàng)的系數(shù)成等差數(shù)列,設(shè)(x+$\frac{1}{2}$)n=a0+a1x+a2x2+…+anxn,求:
(1)a0-a1+a2-a3+…+(-1)nan的值;
(2)ai(i=0,1,2,…,n)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.一房產(chǎn)商競(jìng)標(biāo)得一塊扇形OPQ地皮,其圓心角∠POQ=$\frac{π}{3}$,半徑為R=200m,房產(chǎn)商欲在此地皮上修建一棟平面圖為矩形的商住樓,為使得地皮的使用率最大,準(zhǔn)備了兩種設(shè)計(jì)方案如圖,方案一:矩形ABCD的一邊AB在半徑OP上,C在圓弧上,D在半徑OQ;方案二:矩形EFGH的頂點(diǎn)在圓弧上,頂點(diǎn)G,H分別在兩條半徑上.請(qǐng)你通過(guò)計(jì)算,為房產(chǎn)商提供決策建議.

查看答案和解析>>

同步練習(xí)冊(cè)答案