心理學研究表明,學生在課堂上各時段的接受能力不同.上課開始時,學生的興趣高昂,接受能力漸強,隨后有一段不太長的時間,學生的接受能力保持較理想的狀態(tài);漸漸地學生的注意力開始分散,接受能力漸弱并趨于穩(wěn)定.設上課開始x分鐘時,學生的接受能力為f(x)(f(x)值越大,表示接受能力越強),f(x)與x的函數(shù)關系為:
f(x)=
-0.1x2+2.6x+44,0<x≤10
60,10<x≤15
-3x+105,15<x≤25
30,25<x≤40

(1)開講后多少分鐘,學生的接受能力最強?能維持多少時間?
(2)試比較開講后5分鐘、20分鐘、35分鐘,學生的接受能力的大;
(3)若一個數(shù)學難題,需要56的接受能力(即f(x)≥56)以及12分鐘時間,老師能否及時在學生一直達到所需接受能力的狀態(tài)下講述完這個難題?
考點:函數(shù)模型的選擇與應用
專題:應用題,函數(shù)的性質(zhì)及應用
分析:(1)求學生的接受能力最強其實就是要求分段函數(shù)的最大值,方法是分別求出各段的最大值取其最大即可;
(2)比較5分鐘、20分鐘、35分鐘學生的接受能力大小,方法是把x=5代入第一段函數(shù)中,而x=20要代入到第三段函數(shù)中,x=35代入第四段函數(shù),比較大小即可
(3)在每一段上解不等式f(x)≥56,求出滿足條件的x,從而得到接受能力56及以上的時間,然后與12進行比較即可.
解答: 解:(1)由題意可知:0<x≤10
f(x)=-0.1(x-13)2+60.9
所以當x=10時,f(x)的最大值是60,…(2分)
又10<x≤15,f(x)=60              …(3分)
所以開講后10分鐘,學生的接受能力最強,并能維持5分鐘.…(4分)
(2)由題意可知:f(5)=54.5,f(20)=45,f(35)=30 …(5分)
所以開講后5分鐘、20分鐘、35分鐘的學生的接受能力從大小依次是
開講后5分鐘、20分鐘、35分鐘的接受能力;…(6分)
(3)由題意可知:
當0<x≤10,f(x)=-0.1(x-13)2+60.9≥56
解得:6≤x≤10                 …(7分)
當10<x≤15時,f(x)=60>56,滿足要求; …(8分)
當15<x≤25時,-3x+105≥56
解得:15<x≤16
1
3
               …(9分)
因此接受能力56及以上的時間是10
1
3
分鐘小于12分鐘.
所以老師不能在所需的接受能力和時間狀態(tài)下講述完這個難題.…(10分)
點評:本題主要考查了函數(shù)模型的選擇與應用,此題學生容易出錯,原因是學生把分段函數(shù)定義理解不清,自變量取值不同,函數(shù)解析式不同是分段函數(shù)最顯著的特點.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在一場壘球比賽中,其中本壘與游擊手的初始位置間的距離為1,通常情況下,球速是游擊手跑速的4倍.
(1)若與連結(jié)本壘及游擊手的直線成α角(0°<α<90°)的方向把球擊出,角α滿足什么條件下時,游擊手能接到球?并判斷當α=15°時,游擊手有機會接到球嗎?
(2)試求游擊手能接到球的概率.(參考數(shù)據(jù)
15
=3.88,sin14.5°=0.25).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解關于x的方程6x-3×2x-2×3x+6=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

9-x-2×31-x=27.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,拋物線C:y2=2px(p>0)的焦點為F,過點M(2,0)的動直線l與C相交于A,B兩點.過A,B分別作C的切線交于點Q,當AF與x軸垂直時,直線l的斜率為-2.
(1)求拋物線C的方程;
(2)當△AFB和△QFB的面積相等時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a>0,f(x)=
x
x-a
,g(x)=
xex
x-a
,求曲線y=f(x)與y=g(x)在x=0處的切線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a≥
1
2
,f(x)=-a2x2+ax+c.
(1)證明對任意x∈[0,1],f(x)≤1的充要條件是c≤
3
4

(2)已知關于x的二次方程f(x)=0有兩個實根α、β,證明:|α|≤1且|β|≤1的充要條件是:c≤a2-a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,a1=1,Sn=4an+Sn-1-an-1(n≥2,且n∈N*
(1)證明數(shù)列{an}為等比數(shù)列;
(2)若對?n∈N*,不等式an+α>Sn恒成立,求實數(shù)α的最小值;
(3)若cn=tn[n(lg3+lgt)+lgan+1](t>0),且數(shù)列{cn}中的每一項總小于它后面的項,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:sin100°(1+
3
tan10°)=
 

查看答案和解析>>

同步練習冊答案