20.已知f(x)=x+$\frac{1}{x}$
(1)判斷函數(shù)f(x)的奇偶性;
(2)用函數(shù)單調(diào)性定義證明:f(x)在(0,1)上是減函數(shù).

分析 (1)運用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性;
(2)根據(jù)函數(shù)單調(diào)性的定義,運用作差法證明函數(shù)的單調(diào)性.

解答 解:(1)因為f(x)=f(x)=x+$\frac{1}{x}$,
所以,該函數(shù)的定義域為(-∞,0)∪(0,+∞)
且f(-x)=(-x)+$\frac{1}{-x}$=-(x+$\frac{1}{x}$),
所以,f(-x)=-f(x),
即f(x)為奇函數(shù);
(2)任取x1,x2∈(0,1),且x1<x2,
則f(x1)-f(x2)=x1+$\frac{1}{{x}_{1}}$-(x2+$\frac{1}{{x}_{2}}$)
=(x1-x2)+($\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$)
=(x2-x1)•$\frac{1-{x}_{1}{x}_{2}}{{x}_{1}{x}_{2}}$,
因為x1,x2∈(0,1),且x1<x2,所以,x1x2∈(0,1),
所以,f(x1)-f(x2)>0恒成立,
即f(x)在(0,1)上單調(diào)遞減.

點評 本題主要考查了函數(shù)奇偶性和單調(diào)性的判斷和證明,應(yīng)用了單調(diào)性和奇偶性的定義及作差法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.下列各圖是正方體和正三棱柱(兩底面為正三角形的直棱柱),G、N、M、H分別是頂點或所在棱的中點,則表示直線GH、MN是異面直線的圖形有③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列說法中正確的是( 。
A.“f(0)=0”是“函數(shù)f(x)是奇函數(shù)”的充要條件
B.若p:?x0∈R,x02-x0-1>0,則¬p:?x∈R,x2-x-1<0
C.若p∧q為假命題,則p,q均為假命題
D.“若$α=\frac{π}{6}$,則$sinα=\frac{1}{2}$”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)$f(x)=\left\{\begin{array}{l}|lgx|({0<x<10})\\-\frac{1}{2}x+6({x≥10})\end{array}\right.$,若a<b<c,且f(a)=f(b)=f(c),則abc的取值范圍是(10,12).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.奇函數(shù)f(x)定義域是(t,2t+3),則t=( 。
A.1B.0C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知$f(x)=\frac{2^x}{{1+{2^x}}}-\frac{1}{2}$,若[x]是不超過x的最大整數(shù),則函數(shù)y=[f(x)]-[f(-x)]的值域為( 。
A.[-1,0]B.{-1,1}C.{-1,0,1}D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦點與拋物線C2:y2=4x的焦點相同,記為F,設(shè)點M是兩曲線在第一象限內(nèi)的公共點,且|MF|=$\frac{5}{3}$,則M點的橫坐標(biāo)是$\frac{2}{3}$,a+b=2+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知點P為橢圓x2+2y2=98上一個動點,A(0,5),求|PA|的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}中,a1=$\frac{4}{3}$,且有an+1=an2-an+1,n∈N*
(I)求證:數(shù)列{an}是遞增數(shù)列;
(Ⅱ)記Sn=$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}$,Tn=$\frac{1}{{a}_{1}}•\frac{1}{{a}_{2}}•…•\frac{1}{{a}_{n}}$求證:Sn+3Tn=3.

查看答案和解析>>

同步練習(xí)冊答案