5.已知$f(x)=\frac{2^x}{{1+{2^x}}}-\frac{1}{2}$,若[x]是不超過x的最大整數(shù),則函數(shù)y=[f(x)]-[f(-x)]的值域為( 。
A.[-1,0]B.{-1,1}C.{-1,0,1}D.[-1,1]

分析 分離常數(shù)便可得到$f(x)=\frac{1}{2}-\frac{1}{1+{2}^{x}},f(-x)=-\frac{1}{2}+\frac{1}{1+{2}^{x}}$,根據(jù)2x>0,從而可以求出$\frac{1}{1+{2}^{x}}$的范圍,進一步便可得到$-\frac{1}{2}<f(x)<\frac{1}{2}$,這樣根據(jù)[x]的定義便可分:$-\frac{1}{2}<f(x)<0$,f(x)=0和$0<f(x)<\frac{1}{2}$三種情況求出[f(x)]和[f(-x)],從而可以得出y值,這樣即可求出函數(shù)y=[f(x)]-[f(-x)]的值域.

解答 解:$f(x)=\frac{1}{2}-\frac{1}{1+{2}^{x}}$,$f(-x)=-\frac{1}{2}+\frac{1}{1+{2}^{x}}$;
2x>0;
∴$0<\frac{1}{1+{2}^{x}}<1$;
∴$-\frac{1}{2}<f(x)<\frac{1}{2}$,$-\frac{1}{2}<f(-x)<\frac{1}{2}$;
∴①$-\frac{1}{2}<f(x)<0$時,$-\frac{1}{2}<\frac{1}{2}-\frac{1}{1+{2}^{x}}<0$;
$0<-\frac{1}{2}+\frac{1}{1+{2}^{x}}<\frac{1}{2}$;
即$0<f(-x)<\frac{1}{2}$;
∴[f(x)]=-1,[f(-x)]=0;
∴[f(x)]-[f(-x)]=-1;
②f(x)=0時,$\frac{1}{2}-\frac{1}{1+{2}^{x}}=0$;
∴f(-x)=0;
∴[f(x)]=0,[f(-x)]=0;
∴[f(x)]-[f(-x)]=0;
③$0<f(x)<\frac{1}{2}$時,$0<\frac{1}{2}-\frac{1}{1+{2}^{x}}<\frac{1}{2}$;
∴$-\frac{1}{2}<-\frac{1}{2}+\frac{1}{1+{2}^{x}}<0$;
即$-\frac{1}{2}<f(-x)<0$;
∴[f(x)]=0,[f(-x)]=-1;
∴[f(x)]-[f(-x)]=0-(-1)=1;
∴綜上得,函數(shù)y=[f(x)]-[f(-x)]的值域為{-1,0,1}.
故選:C.

點評 考查函數(shù)值域的概念,指數(shù)函數(shù)的值域,根據(jù)不等式的性質(zhì)求函數(shù)的取值范圍的方法,理解[x]的定義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若第一象限內(nèi)的點A(x、y)落在經(jīng)過點(6,-2)且斜率是-$\frac{2}{3}$的直線上,則log${\;}_{\frac{3}{2}}$x+log${\;}_{\frac{3}{2}}$y有(  )
A.最大值1B.最大值$\frac{3}{2}$C.最小值$\frac{3}{2}$D.最小值1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知M(x0,y0)是雙曲線C:$\frac{{x}^{2}}{2}$-y2=1上的一點,F(xiàn)1、F2是C上的兩個焦點,若∠F1MF2為鈍角,則y0的取值范圍是$(-\frac{{\sqrt{3}}}{3},0)∪(0,\frac{{\sqrt{3}}}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.關(guān)于x的方程x+log2x=[x]([x]表示不大于x的最大整數(shù))的解有( 。﹤.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)=x+$\frac{1}{x}$
(1)判斷函數(shù)f(x)的奇偶性;
(2)用函數(shù)單調(diào)性定義證明:f(x)在(0,1)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知定義域為R的函數(shù)f(x)=$\frac{{-{2^x}+b}}{{{2^{x+1}}+a}}$是奇函數(shù).
(1)求實數(shù)a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并說明理由;
(3)若對任意的t∈(1,4),不等式$f(4-k\sqrt{t})+f(t)>0$恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知角α的終邊經(jīng)過點(-4,3),則sinα=$\frac{3}{5}$,cosα=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知橢圓C:$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1,過E(x0,0)的直線l與橢圓C交于A,B兩點,若$\frac{1}{|EA{|}^{2}}$+$\frac{1}{|EB{|}^{2}}$為定值m,則x0=$\sqrt{3}$;m=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖是函數(shù)f(x)=Asin(2x+φ)(A>0,|φ|≤$\frac{π}{2}$)圖象的一部分,對不同的x1,x2∈[a,b],若f(x1)=f(x2),有f(x1+x2)=$\sqrt{3}$,則φ的值為$\frac{π}{3}$.

查看答案和解析>>

同步練習(xí)冊答案