分析 (I)由an+1=an2-an+1,n∈N*,an≠1,可得an+1-an=$({a}_{n}-1)^{2}$>0,即可證明.
(II)由an+1=an2-an+1,n∈N*,可得an+1-1=an(an-1),取倒數(shù)可得:$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{n}-1}$-$\frac{1}{{a}_{n+1}-1}$.利用“裂項(xiàng)求和”可得Sn=$\frac{1}{{a}_{1}-1}$-$\frac{1}{{a}_{n+1}-1}$.另一方面:由an+1-1=an(an-1),可得$\frac{1}{{a}_{n}}$=$\frac{{a}_{n}-1}{{a}_{n+1}-1}$,因此Tn=$\frac{{a}_{1}-1}{{a}_{n+1}-1}$,即可證明.
解答 證明:(I)∵an+1=an2-an+1,n∈N*,an≠1,
∴an+1-an=$({a}_{n}-1)^{2}$>0,
∴an+1>an.
∴數(shù)列{an}是遞增數(shù)列.
(II)∵an+1=an2-an+1,n∈N*,
∴an+1-1=an(an-1),
∴$\frac{1}{{a}_{n+1}-1}=\frac{1}{{a}_{n}-1}-\frac{1}{{a}_{n}}$,
∴$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{n}-1}$-$\frac{1}{{a}_{n+1}-1}$.
∴Sn=$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}$=$(\frac{1}{{a}_{1}-1}-\frac{1}{{a}_{2}-1})$+$(\frac{1}{{a}_{2}-1}-\frac{1}{{a}_{3}-1})$+…+$(\frac{1}{{a}_{n}-1}-\frac{1}{{a}_{n+1}-1})$
=$\frac{1}{{a}_{1}-1}$-$\frac{1}{{a}_{n+1}-1}$
=3-$\frac{1}{{a}_{n+1}-1}$.
由an+1-1=an(an-1),
可得$\frac{1}{{a}_{n}}$=$\frac{{a}_{n}-1}{{a}_{n+1}-1}$,
∴Tn=$\frac{1}{{a}_{1}}•\frac{1}{{a}_{2}}•…•\frac{1}{{a}_{n}}$=$\frac{{a}_{1}-1}{{a}_{2}-1}$•$\frac{{a}_{2}-1}{{a}_{3}-1}$•…•$\frac{{a}_{n}-1}{{a}_{n+1}-1}$=$\frac{{a}_{1}-1}{{a}_{n+1}-1}$=$\frac{1}{3({a}_{n+1}-1)}$,
∴Sn+3Tn=3-$\frac{1}{{a}_{n+1}-1}$+$\frac{3}{3({a}_{n+1}-1)}$=3.
∴Sn+3Tn=3.
點(diǎn)評(píng) 本題考查了遞推關(guān)系的應(yīng)用、“裂項(xiàng)求和”、“累乘求積”,考查了變形能力、推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | g(x)=$\sqrt{2}$sin(2x+$\frac{3π}{8}$) | B. | g(x)=$\sqrt{2}$cos2x | C. | g(x)=$\sqrt{2}$cos(2x+$\frac{3π}{8}$) | D. | g(x)=$\sqrt{2}$sin2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
評(píng)分 | 低于65分 | 65分到85分 | 高于85分 |
評(píng)價(jià)等級(jí) | 差 | 正常 | 優(yōu) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com