分析 (1)由已知及正弦定理可求$tanC=\sqrt{3}$,即可得解三角形內(nèi)角C的值.
(2)根據(jù)正弦定理,三角形內(nèi)角和定理,三角函數(shù)恒等變換的應(yīng)用化簡可得asinA+bsinB=2+sin(2A-$\frac{π}{6}$),根據(jù)范圍$A∈(0,\frac{2π}{3})$,利用正弦函數(shù)的圖象和性質(zhì)可求$sin(2A-\frac{π}{6})∈({-\frac{1}{2},1}]$,進而得解asinA+bsinB的取值范圍.
解答 (本題滿分為12分)
解:(1)由已知及正弦定理可得:$\frac{a}{sinA}=\frac{1}{cosC}=\frac{c}{sinC}$,
因為:$c=\sqrt{3}$,
所以:$tanC=\sqrt{3}$,
所以:$C=\frac{π}{3}$.----------(4分)
(2)根據(jù)正弦定理可知:$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}=2$,
所以:a=2sinA,b=2sinB,
可得:asinA+bsinB=2sin2A+2sin2B=2-cos2A-cos2B,
因為:$A+B=\frac{2}{3}π$,
所以:$asinA+bsinB=2-cos2A-cos(\frac{4}{3}π-2A)$
=$2-\frac{1}{2}cos2A+\frac{{\sqrt{3}}}{2}sin2A=2+sin(2A-\frac{π}{6})$,
因為:$A∈(0,\frac{2π}{3})$,
所以:$2A-\frac{π}{6}∈(-\frac{π}{6},\frac{7π}{6})$,
所以:$sin(2A-\frac{π}{6})∈({-\frac{1}{2},1}]$,
所以:$2+sin(2A-\frac{π}{6})∈(\frac{3}{2},3]$,
所以:$asinA+bsinB∈(\frac{3}{2},3]$.-----------(12分)
點評 本題主要考查了正弦定理,三角形內(nèi)角和定理,三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$-$\frac{1}{2}$i | B. | -$\frac{1}{2}$+$\frac{1}{2}$i | C. | $\frac{1}{2}$-$\frac{1}{2}$i | D. | $\frac{1}{2}$+$\frac{1}{2}i$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{e}$ | B. | 1 | C. | 2 | D. | e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,3} | B. | {2,4,5} | C. | {1,2,3,4} | D. | {1,2,4,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{12}$ | B. | $\frac{7}{12}$ | C. | $\frac{3}{4}$ | D. | $\frac{11}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com