分析 (1)由題意可得22n-(5-3)n=992,求得n=5;
(2)寫出($\sqrt{x}$-$\frac{1}{\root{3}{x}}$)5的展開式的通項(xiàng)公式,由x得指數(shù)等于0求得r值,則常數(shù)項(xiàng)可求.
解答 解:(1)由題意可得22n-(5-3)n=992,解得2n=32,n=5;
(2)($\sqrt{x}$-$\frac{1}{\root{3}{x}}$)n =($\sqrt{x}$-$\frac{1}{\root{3}{x}}$)5 .
由${T}_{r+1}={C}_{5}^{r}(\sqrt{x})^{5-r}(-\frac{1}{\root{3}{x}})^{r}$=$(-1)^{r}{C}_{5}^{r}{x}^{\frac{15-5r}{6}}$.
令15-5r=0,得r=3.
∴($\sqrt{x}$-$\frac{1}{\root{3}{x}}$)n的展開式的常數(shù)項(xiàng)為$-{C}_{5}^{3}=-10$.
點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-1)2+(y-2)2=2 | B. | (x-1)2+(y+2)2=4 | C. | (x-2)2+(y+4)2=2 | D. | (x-1)2+(y+2)2=2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com