如圖,在直三棱柱中,,是棱上的一點(diǎn),的延長(zhǎng)線與的延長(zhǎng)線的交點(diǎn),且∥平面。

 

(1)求證:;

(2)求二面角的平面角的余弦值;

(3)求點(diǎn)到平面的距離.

 

【答案】

(1)詳見解析;(2);(3)

【解析】

試題分析:(1)連接,由線面平行的性質(zhì)定理可得,,又的中點(diǎn),中點(diǎn)。同理可得的中點(diǎn),再根據(jù)全等證。(2)根據(jù)二面角的定義利用垂面法找到二面角,利用三角函數(shù)求出即可,詳見解析;(3)因?yàn)镈是的中點(diǎn),所以到平面的距離等于到平面的距離,再根據(jù)求點(diǎn)到面的距離。

試題解析:(1)連接,,

,又的中點(diǎn),中點(diǎn),的中點(diǎn),,D為的中點(diǎn)。

(2)由題意,過A作,連接,則,為二面角的平面角。在中,,

因?yàn)樵谌切?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014041804051979689419/SYS201404180406145781925028_DA.files/image029.png"> 中,,所以

(3)因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014041804051979689419/SYS201404180406145781925028_DA.files/image014.png">,所以,

,

中,,

考點(diǎn):線面平行,二面角,點(diǎn)到面的距離

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直三棱柱中,∠ACB=90°,AC=BC=1,側(cè)棱AA1=
2
,M為A1B1的中點(diǎn),則AM與平面AA1C1C所成角的正切值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在直三棱柱中, AB=1,

∠ABC=60.

(1)證明:;

(2)求二面角A——B的正切值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年天津市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本小題滿分13分)如圖,在直三棱柱中,,分別為的中點(diǎn),四邊形是邊長(zhǎng)為的正方形.

(Ⅰ)求證:平面;

(Ⅱ)求證:平面

(Ⅲ)求二面角的余弦值.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省高三2月月考理科數(shù)學(xué) 題型:解答題

如圖,在直三棱柱中,,,的中點(diǎn).

(Ⅰ)求證:∥平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)試問線段上是否存在點(diǎn),使 角?若存在,確定點(diǎn)位置,若不存在,說明理由.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆云南省高二9月月考數(shù)學(xué)試卷 題型:解答題

如圖,在直三棱柱中,,點(diǎn)的中點(diǎn).

求證:(1);(2)平面.

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案