分析 利用已知條件,結合基本不等式求解表達式的最值即可.
解答 解:∵x、y∈R+,且滿足$\frac{1}{x}$+$\frac{2}{y}$=2,
∴8x+y=$\frac{1}{2}$($\frac{1}{x}$+$\frac{2}{y}$)(8x+y)=$\frac{1}{2}$(10+$\frac{y}{x}$+$\frac{16x}{y}$)≥$\frac{1}{2}$(10+8)=9,
當且僅當$\frac{y}{x}$=$\frac{16x}{y}$,即x=$\frac{3}{4}$,y=3時,取等號,
∴8x+y的取值范圍是[9,+∞).
故答案為:[9,+∞).
點評 本題考查基本不等式在最值中的應用,考查計算能力.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [-2,2] | B. | [2,+∞) | C. | [0,+∞) | D. | (-∞,-2]∪[2,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com