分析 (1)數(shù)列{an}是公差d≠0的等差數(shù)列,把a(bǔ)n=a1+(n-1)d代入可得Sn=$({\frac{{{a}_{n}+k}^{\;}}{2})}^{2}$=$\frac{1}{4}[{n}^{2}22cueei^{2}+2nd({a}_{1}-d+k)+({a}_{1}-d+k)^{2}]$,必有a1-d+k=0.又4a1=$({a}_{1}+k)^{2}$,a1+a2=$\frac{({a}_{2}+k)^{2}}{4}$,代入化為d2=2d≠0,解出即可.
(2)由于a2,${a}_{{k}_{2}}$,a14成等比數(shù)列,可得$(2{k}_{2}-1)^{2}$=3×27,解得k2=5.因此等比數(shù)列${a}_{{k}_{1}}$,${a}_{{k}_{2}}$,${a}_{{k}_{3}}$,…${a}_{{k}_{n}}$,…,即為等比數(shù)列3,9,27,可得${a}_{{k}_{n}}$=3n=2kn-1,解得kn.kd an•kn=$\frac{1}{2}•(2n-1)•{3}^{n}+\frac{1}{2}(2n-1)$.再利用“錯(cuò)位相減法”、等比數(shù)列的前n項(xiàng)和公式與等差數(shù)列的前n項(xiàng)和公式即可得出.
解答 解:(1)∵數(shù)列{an}是公差d≠0的等差數(shù)列,
Sn=$({\frac{{{a}_{n}+k}^{\;}}{2})}^{2}$=$\frac{[{a}_{1}+(n-1)d+k]^{2}}{4}$=$\frac{1}{4}[{n}^{2}sgoq2mo^{2}+2nd({a}_{1}-d+k)+({a}_{1}-d+k)^{2}]$,
∴a1-d+k=0.
又4a1=$({a}_{1}+k)^{2}$,∴a1=d-k=$\frac{1}{4}emgygak^{2}$,k=$d-\frac{1}{4}uwikwy2^{2}$.
令n=2時(shí),a1+a2=$\frac{({a}_{2}+k)^{2}}{4}$,代入化為d2=2d≠0,
解得d=2,k=1,a1=1.
∴an=1+2(n-1)=2n-1.
故k=1,an=2n-1.
(2)∵a2,${a}_{{k}_{2}}$,a14成等比數(shù)列,
∴$(2{k}_{2}-1)^{2}$=3×27,
解得k2=5.
∴等比數(shù)列${a}_{{k}_{1}}$,${a}_{{k}_{2}}$,${a}_{{k}_{3}}$,…${a}_{{k}_{n}}$,…,即為等比數(shù)列3,9,27,
∴${a}_{{k}_{n}}$=3×3n-1=3n=2kn-1,
解得${k}_{n}=\frac{1}{2}({3}^{n}+1)$.
∴an•kn=$\frac{1}{2}•(2n-1)•{3}^{n}+\frac{1}{2}(2n-1)$.
令數(shù)列{(2n-1)•3n}的前n項(xiàng)和為T(mén)n.
則Tn=3+3×32+5×33+…+(2n-1)•3n,
∴3Tn=32+3×33+5×34+…+(2n-3)•3n+(2n-1)•3n+1,
∴-2Tn=3+2×32+2×33+…+2×3n-(2n-1)•3n+1=$2×\frac{3×({3}^{n}-1)}{3-1}$-3-(2n-1)•3n+1=(2-2n)•3n+1-6.
∴Tn=3+(n-1)•3n+1.
∴a1k1+a2k2+…+ankn=$\frac{1}{2}[3+(n-1)•{3}^{n+1}]$+$\frac{1}{2}×\frac{n(2n-1+1)}{2}$
=$\frac{1}{2}{n}^{2}$+$\frac{3}{2}$+$\frac{n-1}{2}×{3}^{n+1}$.
點(diǎn)評(píng) 本題考查了遞推式的應(yīng)用、“錯(cuò)位相減法”、等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、等差數(shù)列的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 1 | C. | 0 | D. | ±1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 64 | B. | 32 | C. | -32 | D. | -64 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com