如果奇函數(shù)f(x)在區(qū)間[3,7]上是增函數(shù),且最小值是2014,那么函數(shù)f(x)在區(qū)間[-7,-3]上是(  )
A、增函數(shù)且最小值為-2014
B、增函數(shù)且最大值為-2014
C、減函數(shù)且最小值為-2014
D、減函數(shù)且最大值為-2014
考點(diǎn):奇偶性與單調(diào)性的綜合
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱(chēng)的區(qū)間上單調(diào)性一致及奇函數(shù)定義可選出正確答案.
解答: 解:因?yàn)槠婧瘮?shù)f(x)在區(qū)間[3,7]上是增函數(shù),
所以f(x)在區(qū)間[-7,-3]上也是增函數(shù),
且奇函數(shù)f(x)在區(qū)間[3,7]上有f(3)min=2014,
則f(x)在區(qū)間[-7,-3]上有f(-3)max=-f(3)=-2014,
故選B.
點(diǎn)評(píng):本題考查奇函數(shù)的定義及在關(guān)于原點(diǎn)對(duì)稱(chēng)的區(qū)間上單調(diào)性的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
1
2
x2+x+
1
2
(0≤x≤6),則當(dāng)x=
 
時(shí),y有最大值是
 
;當(dāng)x=
 
時(shí),y有最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩名同學(xué)各自等可能地從數(shù)學(xué)、物理、化學(xué)、生物四個(gè)興趣小組中選擇一個(gè)小組參加活動(dòng),則他們選擇相同小組的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的定義域.
(1)f(x)=
1-2x
+
1
x+3

(2)f(x)=
lg(x+1)
x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在[-2,2]上的偶函數(shù)f(x)在區(qū)間[0,2]上單調(diào)遞減,若f(1-m)<f(m),則實(shí)數(shù)m的取值范圍是( 。
A、m<
1
2
B、m>
1
2
C、-1≤m<
1
2
D、
1
2
<m≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|
2x-3
x-1
≤1},B={x|x2-(a+1)x+a≤0},若A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
ax+b
1+x2
(a,b為常數(shù))是定義在(-1,1)上的奇函數(shù),且f(
1
2
)=
4
5

(1)求函數(shù)f(x)的解析式;
(2)用定義證明f(x)在(-1,1)上是增函數(shù)并求值域;
(3)求不等式f(2t-1)+f(t)<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(5,0)和圓O:x2+y2=16,過(guò)P任意作直線l與圓O交于A、B兩點(diǎn),求弦AB中點(diǎn)M軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=sin(ωx+φ)({其中ω>0,|φ|<
π
2
)的圖象如圖所示,為了得到f(x)的圖象,則只要將函數(shù)g(x)=sinωx的圖象( 。
A、向右平移
π
6
個(gè)單位
B、向右平移
π
12
個(gè)單位
C、向左平移
π
6
個(gè)單位
D、向左平移
π
12
個(gè)單位

查看答案和解析>>

同步練習(xí)冊(cè)答案