【題目】“楊輝三角”又稱“賈憲三角”,是因為賈憲約在公元1050年首先使用“賈憲三角”進(jìn)行高次開方運(yùn)算,而楊輝在公元1261年所著的《詳解九章算法》一書中,記錄了賈憲三角形數(shù)表,并稱之為“開方作法本源”圖.下列數(shù)表的構(gòu)造思路就源于“楊輝三角”.該表由若干行數(shù)字組成,從第二行起,每一行中的數(shù)字均等于其“肩上”兩數(shù)之和,表中最后一行僅有一個數(shù),則這個數(shù)是( )
A. B. C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是橢圓的左、右頂點(diǎn), 為左焦點(diǎn),點(diǎn)是橢圓上異于的任意一點(diǎn),直線與過點(diǎn)且垂直于軸的直線交于點(diǎn),直線于點(diǎn).
(1)求證:直線與直線的斜率之積為定值;
(2)若直線過焦點(diǎn), ,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】石家莊市為鼓勵居民節(jié)約用電,采用分段計費(fèi)的方法計算電費(fèi),每月用電不超過100度時,按每度0.52元計算,每月用電量超過100度時,其中的100度仍按原標(biāo)準(zhǔn)收費(fèi),超過的部分每度按0.6元計算.
(1)設(shè)月用電x度時,應(yīng)繳電費(fèi)y元,寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)小明家第一季度繳納電費(fèi)情況如表:
月份 | 一月 | 二月 | 三月 | 合計 |
繳費(fèi)金額 | 82元 | 64元 | 46.8元 | 192.8元 |
問小明家第一季度共用電多少度?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集為R,集合A={x|﹣3≤x<6},B={x|2<x<9}.
(1)求A∩B,A∪(RB);
(2)已知C={x|a<x<2a+1},若CA,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=( )x , 其反函數(shù)為y=g(x).
(1)若g(mx2+2x+1)的定義域為R,求實數(shù)m的取值范圍;
(2)當(dāng)x∈[﹣1,1]時,求函數(shù)y=[f(x)]2﹣2af(x)+3的最小值h(a);
(3)是否存在實數(shù)m>n>3,使得函數(shù)y=h(x)的定義域為[n,m],值域為[n2 , m2],若存在,求出m、n的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a=20.5 , b=log43,c=log20.2,則( )
A.a>b>c
B.b>a>c
C.c>a>b
D.b>c>a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C: 的離心率是 ,其一條準(zhǔn)線方程為x= .
(Ⅰ)求雙曲線C的方程;
(Ⅱ)設(shè)雙曲線C的左右焦點(diǎn)分別為A,B,點(diǎn)D為該雙曲線右支上一點(diǎn),直線AD與其左支交于點(diǎn)E,若 =λ ,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為3000元時,可全部租出,當(dāng)每輛車的月租金每增加50元時,未租出的車將會增加一輛,租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.,當(dāng)每輛車的月租金定為x元時,租賃公司的月收益為y元,
(1)試寫出x,y的函數(shù)關(guān)系式(不要求寫出定義域);
(2)租賃公司某月租出了88輛車,求租賃公司的月收益多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果一個幾何體的主視圖與左視圖都是全等的長方形,邊長分別是4cm與2cm如圖所示,俯視圖是一個邊長為4cm的正方形.
(1)求該幾何體的全面積.
(2)求該幾何體的外接球的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com