A. | (0,$\sqrt{7}$) | B. | (-$\sqrt{7}$,$\sqrt{7}$) | C. | ($\sqrt{7}$,+∞) | D. | ($-∞,-\sqrt{7}$)$∪(\sqrt{7,}+∞)$ |
分析 根據(jù)向量的減法法則和向量數(shù)量積的運(yùn)算性質(zhì),算出$\overrightarrow{OA}$•$\overrightarrow{OB}$<0,得∠AOB為鈍角.由此可得圓心到直線的距離小于$\frac{\sqrt{2}}{2}$r(r為圓的半徑),結(jié)合點(diǎn)到直線的距離公式列式,即可得到實(shí)數(shù)k的取值范圍.
解答 解:∵|$\overrightarrow{OA}$$+\overrightarrow{OB}$|<|$\overrightarrow{OA}$$-\overrightarrow{OB}$|
∴平方得$\overrightarrow{OA}$•$\overrightarrow{OB}$<0,即|$\overrightarrow{OA}$||$\overrightarrow{OB}$|cos∠AOB<0
因此,∠AOB為鈍角,
∵直線l與圓C交與A,B,
∴圓心到直線的距離小于$\frac{\sqrt{2}}{2}$r(r為圓的半徑)
即$\frac{2}{\sqrt{{k}^{2}+1}}$<$\frac{\sqrt{2}}{2}$,
∴k<-$\sqrt{7}$或k>$\sqrt{7}$,
故選:D.
點(diǎn)評(píng) 本題給出直線與圓相交滿足的向量不等式,求參數(shù)k的取值范圍.著重考查了向量的數(shù)量積運(yùn)算性質(zhì)、直線與圓的位置關(guān)系和點(diǎn)到直線的距離公式等知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 36 | B. | 7×37 | C. | -7×37 | D. | 14×37 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)一定存在極大值和極小值 | |
B. | 若函數(shù)f(x)在(-∞,x1),(x2,+∞)上是增函數(shù),則x2-x1≥$\frac{2\sqrt{3}}{3}$ | |
C. | 函數(shù)f(x)的圖象是中心對稱圖形 | |
D. | 函數(shù)f(x)的圖象在點(diǎn)(x0,f(x0))(x0∈R)處的切線與f(x)的圖象必有兩個(gè)不同的公共點(diǎn) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a∈(0,1),k∈(-$\frac{1}{2}$,$\frac{1}{2}$) | B. | a∈(0,1],k∈(-$\frac{1}{2}$,$\frac{1}{2}$) | ||
C. | a∈(0,1),k∈(-$\frac{1}{2}$,0)∪(0,$\frac{1}{2}$) | D. | a∈(0,1),k∈(-$\frac{1}{2}$,$\frac{1}{2}$] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com