19.如圖,在四棱錐P-ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.
(Ⅰ)求異面直線AP與BC所成角的余弦值;
(Ⅱ)求證:PD⊥平面PBC;
(Ⅲ)求直線AB與平面PBC所成角的正弦值.

分析 (Ⅰ)由已知AD∥BC,從而∠DAP或其補角即為異面直線AP與BC所成的角,由此能求出異面直線AP與BC所成角的余弦值.
(Ⅱ)由AD⊥平面PDC,得AD⊥PD,由BC∥AD,得PD⊥BC,再由PD⊥PB,得到PD⊥平面PBC.
(Ⅲ)過點D作AB的平行線交BC于點F,連結(jié)PF,則DF與平面PBC所成的角等于AB與平面PBC所成的角,由PD⊥平面PBC,得到∠DFP為直線DF和平面PBC所成的角,由此能求出直線AB與平面PBC所成角的正弦值.

解答 解:(Ⅰ)如圖,由已知AD∥BC,
故∠DAP或其補角即為異面直線AP與BC所成的角.
因為AD⊥平面PDC,所以AD⊥PD.
在Rt△PDA中,由已知,得$AP=\sqrt{A{D^2}+P{D^2}}=\sqrt{5}$,
故$cos∠DAP=\frac{AD}{AP}=\frac{{\sqrt{5}}}{5}$.
所以,異面直線AP與BC所成角的余弦值為$\frac{{\sqrt{5}}}{5}$.
證明:(Ⅱ)因為AD⊥平面PDC,直線PD?平面PDC,
所以AD⊥PD.
又因為BC∥AD,所以PD⊥BC,
又PD⊥PB,所以PD⊥平面PBC.
解:(Ⅲ)過點D作AB的平行線交BC于點F,連結(jié)PF,
則DF與平面PBC所成的角等于AB與平面PBC所成的角.
因為PD⊥平面PBC,故PF為DF在平面PBC上的射影,
所以∠DFP為直線DF和平面PBC所成的角.
由于AD∥BC,DF∥AB,故BF=AD=1,
由已知,得CF=BC-BF=2.又AD⊥DC,故BC⊥DC,
在Rt△DCF中,可得$sin∠DFP=\frac{PD}{DF}=\frac{{\sqrt{5}}}{5}$.
所以,直線AB與平面PBC所成角的正弦值為$\frac{{\sqrt{5}}}{5}$.

點評 本小題主要考查兩條異面直線所成的角、直線與平面垂直、直線與平面所成的角等基礎(chǔ)知識.考查空間想象能力、運算求解能力和推理論證能力,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)△ABC的內(nèi)角A,B,C的對應(yīng)邊分別為a,b,c,且滿足(a-b)(sinA+sinB)=(a-c)sinC.
(1)求角B的大。
(2)若b=3,求AC邊上高h的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{2x+y≥0}\\{x+2y-2≥0}\\{x≤0}\\{y≤3}\end{array}\right.$,則目標(biāo)函數(shù)z=x+y的最大值為(  )
A.$\frac{2}{3}$B.1C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點為F,右頂點為A,離心率為$\frac{1}{2}$.已知A是拋物線y2=2px(p>0)的焦點,F(xiàn)到拋物線的準(zhǔn)線l的距離為$\frac{1}{2}$.
(I)求橢圓的方程和拋物線的方程;
(II)設(shè)l上兩點P,Q關(guān)于x軸對稱,直線AP與橢圓相交于點B(B異于A),直線BQ與x軸相交于點D.若△APD的面積為$\frac{\sqrt{6}}{2}$,求直線AP的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知奇函數(shù)f(x)在R上是增函數(shù).若a=-f(${log_2}\frac{1}{5}$),b=f(log24.1),c=f(20.8),則a,b,c的大小關(guān)系為( 。
A.a<b<cB.b<a<cC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知F1、F2分別是橢圓$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的上,下焦點,A,B分別為橢圓的左、右頂點,過橢圓的上焦點F1的直線在x軸上方部分交橢圓于C、D兩點,△F2CD的周長為8,若橢圓的離心率為$\frac{\sqrt{3}}{2}$.
(1)求橢圓的方程;
(2)設(shè)四邊形ABCD的而積為S,求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.f(x)=xcosx,f(x)=cos(2π-x)-x3sinx的奇偶性分別為奇函數(shù);偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若回歸直線的斜率$\widehatb∈(0,+∞)$,則相關(guān)系數(shù)r的取值范圍為( 。
A.(0,1]B.[-1,0)C.0D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列變量中不屬于分類變量的是( 。
A.性別B.吸煙C.宗教信仰D.國籍

查看答案和解析>>

同步練習(xí)冊答案