分析 (Ⅰ)由已知AD∥BC,從而∠DAP或其補角即為異面直線AP與BC所成的角,由此能求出異面直線AP與BC所成角的余弦值.
(Ⅱ)由AD⊥平面PDC,得AD⊥PD,由BC∥AD,得PD⊥BC,再由PD⊥PB,得到PD⊥平面PBC.
(Ⅲ)過點D作AB的平行線交BC于點F,連結(jié)PF,則DF與平面PBC所成的角等于AB與平面PBC所成的角,由PD⊥平面PBC,得到∠DFP為直線DF和平面PBC所成的角,由此能求出直線AB與平面PBC所成角的正弦值.
解答 解:(Ⅰ)如圖,由已知AD∥BC,
故∠DAP或其補角即為異面直線AP與BC所成的角.
因為AD⊥平面PDC,所以AD⊥PD.
在Rt△PDA中,由已知,得$AP=\sqrt{A{D^2}+P{D^2}}=\sqrt{5}$,
故$cos∠DAP=\frac{AD}{AP}=\frac{{\sqrt{5}}}{5}$.
所以,異面直線AP與BC所成角的余弦值為$\frac{{\sqrt{5}}}{5}$.
證明:(Ⅱ)因為AD⊥平面PDC,直線PD?平面PDC,
所以AD⊥PD.
又因為BC∥AD,所以PD⊥BC,
又PD⊥PB,所以PD⊥平面PBC.
解:(Ⅲ)過點D作AB的平行線交BC于點F,連結(jié)PF,
則DF與平面PBC所成的角等于AB與平面PBC所成的角.
因為PD⊥平面PBC,故PF為DF在平面PBC上的射影,
所以∠DFP為直線DF和平面PBC所成的角.
由于AD∥BC,DF∥AB,故BF=AD=1,
由已知,得CF=BC-BF=2.又AD⊥DC,故BC⊥DC,
在Rt△DCF中,可得$sin∠DFP=\frac{PD}{DF}=\frac{{\sqrt{5}}}{5}$.
所以,直線AB與平面PBC所成角的正弦值為$\frac{{\sqrt{5}}}{5}$.
點評 本小題主要考查兩條異面直線所成的角、直線與平面垂直、直線與平面所成的角等基礎(chǔ)知識.考查空間想象能力、運算求解能力和推理論證能力,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | b<a<c | C. | c<b<a | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1] | B. | [-1,0) | C. | 0 | D. | 無法確定 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com