如圖所示,在棱長為1的正方體ABCD-A1B1C1D1中,M是棱CD的中點(diǎn),則
A1M
DC1
所成角的余弦值為( 。
A、-
2
6
B、
2
6
C、-
10
10
D、
10
10
考點(diǎn):異面直線及其所成的角
專題:空間角
分析:以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出
A1M
DC1
所成角的余弦值.
解答: 解:以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,
建立空間直角坐標(biāo)系,
A1(1,0,1),M(0,
1
2
,0),
D(0,0,0),C1(0,1,1),
A1M
=(-1,
1
2
,-1),
DC1
=(0,1,1),
cos<
A1M
DC1
>=
1
2
-1
2+
1
4
2
=-
2
6

故選:A.
點(diǎn)評(píng):本題考查異面直線所成角的大小的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=8x2-(m-1)x+m-7的頂點(diǎn)在x軸上,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α,β均為銳角,sinα=
5
5
,cosβ=
10
10
,求α-β為( 。
A、
π
4
B、-
π
4
C、±
π
4
D、
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若-
2
<θ<-π,那么(tanθ,cosθ)在
 
象限?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(
π
4
+α)=
1
3
,則cos(
π
4
-α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二次函數(shù)y=x2-2x+1在區(qū)間(-∞,a]上為減函數(shù),則a的取值范圍是( 。
A、a>1B、a≥1
C、a<1D、a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是邊長為1的菱形,∠ABC=
π
3
,且PA⊥平面ABCD,PA=2,M為PA的中點(diǎn).
(Ⅰ)求證:直線PC∥平面MBD;
(Ⅱ)求異面直線AB與MD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=(ax2+(a-1)2x-a2+3a-12)ex,a≥0,g(x)=lnx-x-3.
(1)求g(x)的最大值;
(2)若函數(shù)f(x)在區(qū)間(2,3)上單調(diào),求a的取值范圍;
(3)當(dāng)a=0時(shí),設(shè)h(x)=
f(x)
ex
+g(x),若直線y=kx+b與曲線y=h(x)的交點(diǎn)為A(x1,y1),B(x2,y2),其中0<x1<x2,證明:k(x1+x2)>2成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=mx2-(4+m2)x,其中m∈R,且m>0,區(qū)間D={x|f(x)<0}.
(1)求區(qū)間D的長度(區(qū)間(a,b)的長度定義為b-a);
(2)記區(qū)間D的長度為g(m),試用函數(shù)的單調(diào)性定義證明g(m)在(0,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增;
(3)給定常數(shù)t∈(0,2),當(dāng)2-t≤m≤2+t時(shí),求區(qū)間D的長度的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案