1.過拋物線y=x2焦點(diǎn)的弦的最小值為1.

分析 當(dāng)AB與y軸垂直時(shí),通徑長(zhǎng)最短,即可得出結(jié)論.

解答 解:由拋物線y=x2可得:p=$\frac{1}{2}$
焦點(diǎn)F(0,$\frac{1}{4}$).
∴當(dāng)AB與y軸垂直時(shí),通徑長(zhǎng)最短,|AB|=2p=1.
故答案為:1.

點(diǎn)評(píng) 本題考查了拋物線的焦點(diǎn)弦長(zhǎng)問題,利用通徑長(zhǎng)最短是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知橢圓$C:\frac{x^2}{4}+\frac{y^2}{3}=1$的右焦點(diǎn)為F點(diǎn),P為橢圓C上一動(dòng)點(diǎn),定點(diǎn)A(2,4),則|PA|-|PF|的最小值為( 。
A.1B.-1C.$\sqrt{17}$D.$-\sqrt{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.?dāng)?shù)列3,5,9,17,33,…的通項(xiàng)公式an等于( 。
A.2nB.2n+1C.2n-1D.2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)x∈Z,A={奇數(shù)},B={偶數(shù)},若命題p:?x∈A,2x∈B,則其否定為( 。
A.?x∈A,2x∉BB.?x∉A,2x∉BC.?x∉A,2x∈BD.?x∈A,2x∉B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.若橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率$e=\frac{{\sqrt{3}}}{2}$,點(diǎn)$Q(\sqrt{2},\frac{{\sqrt{2}}}{2})$在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若斜率為k(k≠0)的直線n交橢圓C與A、B兩點(diǎn),且kOA、k、kOB成等差數(shù)列,又有點(diǎn)M(1,1),
求S△ABM的面積(結(jié)果用k表示);
(3)求出(2)中S△ABM的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列兩組變量具有相關(guān)關(guān)系的是( 。
A.人的體重與學(xué)歷B.圓的半徑與其周長(zhǎng)
C.人的生活水平與購(gòu)買能力D.成年人的財(cái)富與體重

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.滿足{1,2}∪B={1,2,3}的集合B的個(gè)數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.將函數(shù)y=sinx的圖象上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$倍(縱坐標(biāo)不變),再將得到的圖象向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度,所得圖象的函數(shù)解析式為y=sin(2x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)函數(shù)f(x)=-2x,g(x)=lg(ax2-2x+1),若對(duì)任意x1∈R,都存在x2∈R,使f(x1)=g(x2),則實(shí)數(shù)a的取值范圍為( 。
A.(-1,0)B.(0,1)C.(-∞,1]D.[1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案