10.將函數(shù)y=sinx的圖象上每個點的橫坐標變?yōu)樵瓉淼?\frac{1}{2}$倍(縱坐標不變),再將得到的圖象向左平移$\frac{π}{12}$個單位長度,所得圖象的函數(shù)解析式為y=sin(2x+$\frac{π}{6}$).

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結論.

解答 解:將函數(shù)y=sinx的圖象上每個點的橫坐標變?yōu)樵瓉淼?\frac{1}{2}$倍(縱坐標不變),可得y=sin2x的圖象;
再將得到的圖象向左平移$\frac{π}{12}$個單位長度,可得y=sin2(x+$\frac{π}{12}$)=sin(2x+$\frac{π}{6}$)的圖象,
故答案為:y=sin(2x+$\frac{π}{6}$).

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結論.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

20.已知中心在原點的橢圓E的左焦點F(-$\sqrt{3}$,0),右頂點A(2,0),拋物線C焦點為A.
(1)求橢圓E與拋物線C的標準方程;
(2)若過(0,1)的直線 l 與拋物線C有且只有一個交點,求直線 l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.過拋物線y=x2焦點的弦的最小值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知全集U={1,2,3,4,5,6,7,8},A,B均為U的子集,且A∩(∁UB)={1,8},(∁UA)∩B={2,6},∁U(A∪B)={4,5,7},則集合A={1,3,8}.(用列舉法表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=x-alnx,g(x)=-$\frac{1+a}{x}$(a>0)
(1)若a=l,求f(x)的極值;
(2)若存在x0∈[1,e],使得f(x0)<g(x0)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.函數(shù)f(x)=-2sin(2x-$\frac{π}{4}$)+1(x∈[0,$\frac{π}{2}$])的最大值是$\sqrt{2}+1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.執(zhí)行如圖所示的程序,則輸入的i的值為( 。
A.-1B.0C.-1或2D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.如圖,A,B為拋物線y2=4x上的兩點,F(xiàn)為拋物線的焦點且FA⊥FB,C為直線AB上一點且橫坐標為-1,連結FC.若|BF|=3|AF|,則tanC=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.某食品廠為了檢查甲乙兩條自動包裝流水線的生產情況,隨機在這兩條流水線上各抽取40件產品作為樣本稱出它們的重量(單位:克),重量值落在(495,510]的產品為合格品,否則為不合格品.圖1是甲流水線樣本的頻率分布直方圖,表1是乙流水線樣本頻數(shù)分布表.
表1:(乙流水線樣本頻數(shù)分布表) 
產品重量(克)頻數(shù)
(490,495]6
(495,500]8
(500,505]14
(505,510]8
(510,515]4
(Ⅰ)若以頻率作為概率,試估計從甲流水線上任取5件產品,求其中合格品的件數(shù)X的數(shù)學期望; (Ⅱ)從乙流水線樣本的不合格品中任意取x2+y2=2件,求其中超過合格品重量的件數(shù)l:y=kx-2的分布列;(Ⅲ)由以上統(tǒng)計數(shù)據(jù)完成下面$\frac{π}{2}$列聯(lián)表,并回答有多大的把握認為“產品的包裝質量與兩條資動包裝流水線的選擇有關”.
甲流水線乙流水線合計
合格品a=b=
不合格品c=d=
合 計n=
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:下面的臨界值表供參考:
(參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步練習冊答案