【題目】甲、乙兩人進行圍棋比賽,約定先連勝兩局者直接贏得比賽.若賽完5局仍未出現(xiàn)連勝,則判定獲勝局數(shù)多者贏得比賽.假設(shè)每局甲獲勝的概率為,乙獲勝的概率為各局比賽結(jié)果相互獨立.則甲在4局以內(nèi)(含4局)贏得比賽的概率為( )
A.B.C.D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種新產(chǎn)品投放市場一段時間后,經(jīng)過調(diào)研獲得了時間(天數(shù))與銷售單價(元)的一組數(shù)據(jù),且做了一定的數(shù)據(jù)處理(如表),并作出了散點圖(如圖).
1.63 | 37.8 | 0.89 | 5.15 | 0.92 | 18.40 |
表中.
(1)根據(jù)散點圖判斷,與哪一個更適合作價格關(guān)于時間的回歸方程類型?(不必說明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程.
(3)若該產(chǎn)品的日銷售量(件)與時間的函數(shù)關(guān)系為,求該產(chǎn)品投放市場第幾天的銷售額最高?最高為多少元?
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且存在不同的實數(shù)x1,x2,x3,使得f(x1)=f(x2)=f(x3),則x1x2x3的取值范圍是( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三角形ABC中,,AC=1,以B為直角頂點作等腰直角三角形BCD(A、D在BC兩側(cè)),當∠BAC變化時,線段AD的長度最大值為._______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的離心率是,A、B分別為橢圓的左頂點、上頂點,原點O到AB所在直線的距離為.
(I)求橢圓C的方程;
(Ⅱ)已知直線與橢圓相交于不同的兩點M,N(均不是長軸的端點),,垂足為H,且,求證:直線恒過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:
以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.
(1)求六月份這種酸奶一天的需求量不超過300瓶的概率,;
(2)設(shè)六月份一天銷售這種酸奶的利潤為(單位:元),當六月份這種酸奶一天的進貨量為450瓶時,寫出的所有可能值,并估計大于零的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點為拋物線外一點,過點作拋物線的兩條切線,,切點分別為,.
(Ⅰ)若點為,求直線的方程;
(Ⅱ)若點為圓上的點,記兩切線,的斜率分別為,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一盒中裝有9張各寫有一個數(shù)字的卡片,其中4張卡片上的數(shù)字是1,3張卡片上的數(shù)字是2,2張卡片上的數(shù)字是3,從盒中任取3張卡片.
(1)求所取3張卡片上的數(shù)字完全相同的概率;
(2)表示所取3張卡片上的數(shù)字的中位數(shù),求的分布列與數(shù)學(xué)期望.
(注:若三個數(shù)滿足,則稱為這三個數(shù)的中位數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com