1.某幾何體的一條棱長為3,在該幾何體的正視圖中,這條棱的投影長為2的線段,在該幾何體的側(cè)視圖和俯視圖中,這條棱長的投影長分別是a和b的線段,則a+b的最大值為( 。
A.2$\sqrt{2}$B.2$\sqrt{7}$C.4D.2$\sqrt{6}$

分析 由棱和它在三視圖中的投影擴(kuò)展為長方體,三視圖中的三個(gè)投影,是三個(gè)面對角線,設(shè)出三度,利用勾股定理,基本不等式求出最大值.

解答 解:將已知中的棱和它在三視圖中的投影擴(kuò)展為長方體,
三視圖中的三個(gè)投影,是三個(gè)面對角線,
則設(shè)長方體的三度:x、y、z,
所以x2+y2+z2=9,x2+y2=a2,y2+z2=b2
x2+z2=4可得a2+b2=14
∵(a+b)2≤2(a2+b2
a+b≤2$\sqrt{7}$,
∴a+b的最大值為2$\sqrt{7}$,
故選:B.

點(diǎn)評 本題考查三視圖,幾何體的結(jié)構(gòu)特征,考查空間想象能力,基本不等式的應(yīng)用,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=kx-2,f(1)=-1,則f(2)=(  )
A.0B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知sinα<0且tanα>0,則角α所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)滿足y≥|x-a|的點(diǎn)(x,y)的集合為A,滿足y≤-|x|+b的點(diǎn)(x,y)的集合為B,其中a,b為正數(shù).
(1)用平面區(qū)域表示出集合A、B,并探求a,b的關(guān)系式,使A∩B≠∅.
(2)在(1)的條件下,求A∩B表示區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=-x2-2x,g(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{x+\frac{1}{4x},x>0}\end{array}\right.$,若函數(shù)y=g(f(x))-a有4個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(0,1]B.($\frac{1}{2}$,1]C.($\frac{1}{2}$,$\frac{5}{4}$)D.[1,$\frac{5}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}滿足a1=1,且an+1=2an+1,
(1)求{an}的通項(xiàng)公式an
(2)若bn=4n-1,${c_n}=\frac{{{a_n}+1}}{2}$,求數(shù)列{bn•cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知二次函數(shù)y=ax2+bx+c+2的圖象如圖所示,頂點(diǎn)為(-1,0),下列結(jié)論:①abc<0;②b2-4ac=0;③a>2;④4a-2b+c>0.其中正確結(jié)論的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n2-4n+4,(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}中,令bn=$\left\{\begin{array}{l}{1,n=1}\\{\frac{{a}_{n}+5}{2},n≥2}\end{array}\right.$,Tn=$\frac{1}{{_{1}}^{2}}+\frac{1}{{_{2}}^{2}}+\frac{1}{{_{3}}^{2}}+…\frac{1}{{_{n}}^{2}}$,求證:Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}中,a1=1,a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+3}$(n∈N*).
(1)求證:{$\frac{1}{{a}_{n}}+\frac{1}{2}$}是等比數(shù)列,并求{an}的通項(xiàng)公式an;
(2)數(shù)列{bn}滿足bn=(3n-1).$\frac{n}{{2}^{n}}$.a(chǎn)n,數(shù)列{bn}的前n項(xiàng)和為Tn,
若不等式(-1)nλ<Tn+$\frac{n}{{2}^{n-1}}$對一切n∈N*恒成立,求λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案