函數(shù)f(x)=x2-2x-3在[-1,3]中的最大值為
 
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最值問題.
解答: 解:∵f(x)=(x-1)2-4,
∴對稱軸是x=1,
∴函數(shù)在[-1,1)遞減,在(1,3]遞增,
∴f(x)max=f(-1)=f(3)=0,
故答案為:0.
點評:本題考查了二次函數(shù)的性質(zhì),考查函數(shù)的最值問題,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在2014-2015賽季CBA常規(guī)賽中,某籃球運(yùn)動員在最近5場比賽中的投籃次數(shù)及投中次數(shù)如下表所示:
 2分球3分球
第1場10投5中4投2中
第2場13投5中5投2中
第3場8投4中3投1中
第4場9投5中3投0中
第5場10投6中6投2中
(1)分別求該運(yùn)動員在這5場比賽中2分球的平均命中率和3分球的平均命中率;
(2)視這5場比賽中2分球和3分球的平均命中率為相應(yīng)的概率.假設(shè)運(yùn)動員在第6場比賽前一分鐘分別獲得1次2分球和1次3分球的投籃機(jī)會,該運(yùn)動員在最后一分鐘內(nèi)得分ξ分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=sin|x|的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將“函數(shù)f(x)=4x2-2(p-2)x-2p2-p+1在區(qū)間[-1,1]上至少存在一個實數(shù)c,使f(c)>0”反設(shè),所得命題為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,設(shè)數(shù)列{bn}滿足bn=2(Sn+1-Sn)Sn-n(Sn+1+Sn)(n∈N*).
(1)若數(shù)列{an}為等差數(shù)列,且bn=0,求數(shù)列{an}的通項公式;
(2)若a1=1,a2=3,且數(shù)列{a2n-1}的,{a2n}都是以2為公比的等比數(shù)列,求滿足不等式b2n<b2n-1的所有正整數(shù)的n集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中為真命題的是( 。
A、若x≠0,則x+
1
x
≥2
B、命題:若x2=1,則x=1或x=-1的逆否命題為:若x≠1且x≠-1,則x2≠1
C、“a=1”是“直線x-ay=0與直線x+ay=0互相垂直”的充要條件
D、若命題P:?x∈R,x2-x+1<0,則¬P:?x∈R,x2-x+1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=4x-m•2x+1,若存在實數(shù)x0,使得f(-x0)=-f(x0)成立,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n是兩條不同的直線,α,β,γ是三個不同的平面,給出下列四個命題:
①m⊥α,n∥α,則m⊥n;     
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,β∥γ,m⊥α,則m⊥γ;
④若α∩γ=m,β∩γ=n,m∥n,則α∥β.
其中正確命題的序號是( 。
A、①和③B、②和③
C、③和④D、①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足
x-y≥0
x-4y+3≤0
x+2y-9≥0
,則-2x+y的最大值為(  )
A、-1B、-3C、-8D、-9

查看答案和解析>>

同步練習(xí)冊答案