在△ABC中,∠C=90°,A=30°,b=
3
,則a=
 
考點:正弦定理
專題:解三角形
分析:由題意和內(nèi)角和定理求出角B,再由正弦定理求出邊a的值.
解答: 解:由A+B+C=180°得,B=180°-A-C=60°,
由正弦定理得,
a
sinA
=
b
sinB

則a=
bsinA
sinB
=
3
×
1
2
3
2
=1,
故答案為:1.
點評:本題考查了正弦定理,內(nèi)角和定理的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ln(-x2+8x+20)的定義域記為A,集合B={m|1-m<x<1+m},若B⊆A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(ax2-(a+1)x+1)ex,a∈R.
(1)當(dāng)a=1時,求f(x)的單調(diào)區(qū)間;
(2)若f(x)在區(qū)間[0,1]上單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C1的參數(shù)方程
x=2cosφ
y=3sinφ
(φ為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ=2,正方形ABCD的頂點都在C2上,且A,B,C,D依逆時針次序排列,點A的極坐標(biāo)為(2,
π
3
),設(shè)P為C1上任意一點,則|PA|2+|PB|2+|PC|2+|PD|2的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個籃球運動員投籃一次得3分的概率為a,得2分的概率為b,不得分的概率為c,(a,b,c∈(0,1)),已知他投籃一次得分的均值為1(不計其他得分情況),則ab的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a≤0,P是橢圓
x2
4
+y2=1上的任一點,M(a,0),若|PM|的最小值為1,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊經(jīng)過點P(1,
3
),則sinα+cosα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列敘述正確的序號是
 

①對于定義在R上的函數(shù)f(x),若f(-3)=f(3),則函數(shù)f(x)不是奇函數(shù);
②定義在R上的函數(shù)f(x),在區(qū)間(-∞,0]上是單調(diào)增函數(shù),在區(qū)間(0,+∞)上也是單調(diào)增函數(shù),則函數(shù)f(x)在R上是單調(diào)增函數(shù);
③已知函數(shù)的解析式為y=x2,它的值域為{4,9},那么這樣的函數(shù)有9個;
④對于任意的x1,x2∈(0,+∞),若函數(shù)f(x)=log2x,則
f(x1)+f(x2)
2
f(
x1+x2
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2=r2與直線x+2y-5=0相交于P,Q兩點,若
OP
OQ
=0(O為原點),則圓的半徑r值的為
 

查看答案和解析>>

同步練習(xí)冊答案