已知曲線C1的參數(shù)方程
x=2cosφ
y=3sinφ
(φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ=2,正方形ABCD的頂點(diǎn)都在C2上,且A,B,C,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為(2,
π
3
),設(shè)P為C1上任意一點(diǎn),則|PA|2+|PB|2+|PC|2+|PD|2的取值范圍為
 
考點(diǎn):參數(shù)方程化成普通方程
專題:坐標(biāo)系和參數(shù)方程
分析:首先,設(shè)P(2cosθ,3sinθ),然后,代入,化簡待求的式子,得到S=|PA|2+|PB|2+|PC|2+|PD|2=32+20sin2θ,然后,結(jié)合0≤sin2θ≤1,確定其范圍.
解答: 解:設(shè)P(2cosθ,3sinθ),
令 S=|PA|2+|PB|2+|PC|2+|PD|2,
∴S=16cos2θ+36sin2θ+16
=32+20sin2θ,
∵0≤sin2θ≤1,
∴S的取值范圍為:[32,52].
故答案為:[32,52].
點(diǎn)評(píng):本題重點(diǎn)考查了參數(shù)方程在求解范圍中的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,且a1=
1
2
,Sn=n2an-n(n-1),n=1,2,…
(1)寫出Sn與Sn-1的遞推關(guān)系式(n≥2),并求S2,S3,S4的值;
(2)猜想Sn關(guān)于n的表達(dá)式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
,
b
,
c
在同一平面內(nèi),且
a
=(-1,2).
(1)若
c
=(m-1,3m),且
c
a
,求m的值;
(2)若|
b
|=
5
2
,且(
a
+2
b
)⊥(2
a
-
b
),求向量
a
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知a=
1
2
,b=
1
32
,求[a-
3
2
b(ab-2)-
1
2
(a-1)-
2
3
]2[a-
3
2
b(ab-2)-
1
2
(a-1)-
2
3
的值;
(2)計(jì)算
2
3
lg8+lg25+lg2•lg50+lg25的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與橢圓
x2
48
+
y2
23
=1有公共焦點(diǎn),且離心率e=
5
4
的雙曲線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面向量也叫二維向量,二維向量的坐標(biāo)表示及其運(yùn)算可以推廣到n(n≥3)維向量,n維向量可用(x1,x2,x3,x4,…,xn)表示.設(shè)
a
=(a1,a2,a3,a4,…,an),
b
=(b1,b2,b3,b4,…,bn),規(guī)定向量
a
b
夾角θ的余弦為cosθ=
n
i=1
aib1
(
n
i=1
ai2)(
n
i=1
b2i)
.已知n維向量
a
,
b
,當(dāng)
a
=(1,1,1,1,…,1),
b
=(-1,-1,1,1,1,…,1)時(shí),cosθ等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠C=90°,A=30°,b=
3
,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ex,若f(a+b)=2,則f(2a)•f(2b)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果從中國2010年上海世博會(huì)以下六個(gè)國家館:沙特阿拉伯館、德國館、法國館、日本館、澳大利亞館和中國館中任選三個(gè)參觀(假設(shè)上述六個(gè)館中每個(gè)館被選中的可能性相等),那么其中一定有沙特阿拉伯館的概率為
 
(結(jié)果用數(shù)值表示).

查看答案和解析>>

同步練習(xí)冊答案