下列各圖中,、為正方體的兩個頂點,、分別為其所在棱的中點,能得出//平面的圖形的序號是                
①③.

試題分析:圖①易得平面平行于平面AB,所以//平面.②中如下圖,連結CD,BE且相交于點O.所以AB∥NO0所以直線AB與平面相交.③中如下圖.連結BC,AC.可得平面ABC與平面PMN平行,所以//平.④中如圖.做一個平面BCP’與平面MNP平行.可知直線AB與平面MNP相交.綜上填①③.本題主要就是應用線面平行,面面平行的知識.僅根據(jù)圖形很難判斷出結論,要利用相應的判斷性質.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐中,側面是邊長為2的正三角形,且與底面垂直,底面的菱形,的中點.

(Ⅰ)求與底面所成角的大;
(Ⅱ)求證:平面;(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖:四邊形是梯形,,,三角形是等邊三角形,且平面 平面,,,

(1)求證:平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知四棱錐中,底面是直角梯形,,,,平面. 
(Ⅰ)求證:平面;
(Ⅱ)求證:平面
(Ⅲ)若的中點,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直棱柱中,分別是的中點,.

⑴證明:;
⑵求EC與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,邊長為2的正方形ABCD,E,F分別是AB,BC的中點,將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于.

(1)求證:⊥EF;
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是兩條不同的直線,是兩個不同的平面,則下列命題中的真命題是(   )
A.若B.若
C.若D.若

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是兩條不同的直線,是兩個不同的平面,則下列命題正確的是(  )
A.若,則B.若,則
C.若,則D.若,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖所示,直線垂直于⊙所在的平面,內接于⊙,且為⊙的直徑,點為線段的中點.現(xiàn)有結論:①;②平面;③點到平面的距離等于線段的長.其中正確的是(    )
A.①②B.①②③C.①D.②③

查看答案和解析>>

同步練習冊答案