已知|
a
|=|
b
|=1,|
a
-
b
|=
3
,則向量
a
b
的夾角為
 
考點(diǎn):數(shù)量積表示兩個(gè)向量的夾角
專題:平面向量及應(yīng)用
分析:把|
a
-
b
|=
3
兩邊平方,代入數(shù)據(jù)可得cosθ的方程,解方程可得.
解答: 解:設(shè)向量
a
b
的夾角為θ,θ∈[0,π],
∵|
a
|=|
b
|=1,|
a
-
b
|=
3
,
∴|
a
-
b
|2=|
a
|2+|
b
|2-2|
a
||
b
|cosθ=3,
代入數(shù)據(jù)可得1+1-2×1×1×cosθ=3,
解得cosθ=
1
2
,∴θ=
π
3

故答案為:
π
3
點(diǎn)評(píng):本題考查平面向量的夾角和數(shù)量積,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=m+
2
2x+1
是奇函數(shù).
(1)求m的值;
(2)求f(x)的值域;
(3)判斷f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)M(x0,y0)在直線2x+y-2=0上運(yùn)動(dòng),若在圓:x2+y2=1上存在點(diǎn)N,使得∠OMN=30°,則x0的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,an+an+1+an+2為定值,且a13+a15+117=3,前n項(xiàng)和為Sn,給出以下結(jié)論:
①數(shù)列{an}一定為常數(shù)列;
②數(shù)列{an}不可能為等比數(shù)列;
③a1+a2+a3=3;
④a1有無(wú)數(shù)個(gè)值;
⑤S3n=3n
其中結(jié)論正確的為
 
(寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα=
5
13
,且α=(
π
2
,π),求cos2α,sin2α及sin
α
2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明:sin(2α+β)-2cos(α+β)•sinα=sinβ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合P={x|4≤x<9},Q={x|1<x<11},M={x|x<a}.
(1)求P∪Q,(CRP)∩Q;
(2)若P∩M≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sin(θ+75°)+cos(θ+45°)+cos(θ+15°)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是定義域?yàn)镽的偶函數(shù).當(dāng)x≥0時(shí),f(x)=
5
4
sin(
π
2
x)(0≤x≤1)
(
1
4
)x+1(x>1)
,若關(guān)于x的方程5[f(x)]2-(5a+6)f(x)+6a=0(a∈R),有且僅有6個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( 。
A、0<a<1或a=
5
4
B、0≤a≤1或a=
5
4
C、0<a≤1或a=
5
4
D、1<a≤
5
4
或a=0

查看答案和解析>>

同步練習(xí)冊(cè)答案