10.已知p:“方程$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{3}$=1”表示雙曲線;q:“關(guān)于x的方程x2-mx+1=0沒有實數(shù)根”.
若“¬p”和“p∨q”都是真命題,求m的取值范圍.

分析 分別判斷出p,q的真假,從而判斷出復(fù)合命題的真假即可.

解答 解:p:“方程$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{3}$=1”表示雙曲線,
∴m>0;
q:“關(guān)于x的方程x2-mx+1=0沒有實數(shù)根”,
△=m2-4<0,解得:-2<m<2,
∴q:-2<m<2,
又“¬p”和“p∨q”都是真命題,
∴p是假命題且q是真命題,
∴$\left\{\begin{array}{l}{m≤0}\\{-2<m<2}\end{array}\right.$,解得:-2<m≤0,
∴m的范圍是(-2,0].

點評 本題考查了復(fù)合命題的判斷,考查二次函數(shù)性質(zhì)以及雙曲線問題,是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=x2+x-2,x∈[-1,6],若在其定義域內(nèi)任取一數(shù)x0使得f(x0)≤0概率是( 。
A.$\frac{2}{7}$B.$\frac{3}{7}$C.$\frac{4}{7}$D.$\frac{5}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=$\frac{\sqrt{x+1}}{ln(1-x)}$的定義域為[-1,0)∪(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知△ABC內(nèi)角A,B,C的對邊分別為a,b,c,B=60°,b2=ac,則A=(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等比數(shù)列{an}的前n項和為Sn,公比q>1,S2=6,且a2是a3與a3-2的等差中項.
(1)求an和Sn
(2)設(shè)bn=log2an,求Tn=$\frac{1}{_{1}_{3}}$+$\frac{1}{_{2}_{4}}$+…+$\frac{1}{_{n}_{n+2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.給出下列四個命題:①沒有公共點的兩條直線平行;②互相垂直的兩條直線是相交直線;③既不平行也不相交的兩條直線是異面直線;④不同在任何一個平面內(nèi)的兩條直線是異面直線.
其中正確的命題是(  )
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow{a}$=(m,1),$\overrightarrow$=(m-2,1),若|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則實數(shù)m=( 。
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某廠通過技術(shù)改造降低了產(chǎn)品A對重要原材料G的消耗,如表提供了該廠技術(shù)改造后生產(chǎn)產(chǎn)品A的過程記錄的產(chǎn)量x(噸)與原材料G相應(yīng)的消耗量y(噸)的幾組對照數(shù)據(jù):
 x 3 4 5 6
 y 1.6 2.2 3.0 3.4
(1)請在圖a中畫出如表數(shù)據(jù)的散點圖;
(2)請根據(jù)如表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)50噸產(chǎn)品A需要消耗原材料G多少噸?參考公式:最小二乘法求線性回歸方程
系數(shù)公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知數(shù)列{an}的通項公式是an=(-1)n•(3n+1),則a1+a2+…a100=( 。
A.-300B.-150C.150D.300

查看答案和解析>>

同步練習冊答案