【題目】已知函數(shù)f(x)=x2﹣(a+2)x+alnx.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的極值;
(2)設(shè)定義在D上的函數(shù)y=g(x)在點(diǎn)P(x0 , y0)處的切線方程為l:y=h(x).當(dāng)x≠x0時(shí),若 >0在D內(nèi)恒成立,則稱P為函數(shù)y=g(x)的“轉(zhuǎn)點(diǎn)”.當(dāng)a=8時(shí),問(wèn)函數(shù)y=f(x)是否存在“轉(zhuǎn)點(diǎn)”?若存在,求出“轉(zhuǎn)點(diǎn)”的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)解:a=1時(shí),f′(x)=2x﹣3+ = ,
當(dāng)f′(x)>0時(shí),0<x< ,或x>1,
當(dāng)f′(x)<0時(shí), <x<1,
∴f(x)在(0, )和(1,+∞)遞增,在( ,1)遞減;
∴x= 時(shí),f(x)極大值=﹣ +ln ,
x=1時(shí),f(x)極小值=﹣2
(2)解:a=8時(shí),由y=f(x)在其圖象上一點(diǎn)P(x0,f(x0))處的切線方程,
得h(x)=(2x0+ ﹣10)(x﹣x0)+ ﹣10x0+8lnx0,
設(shè)F(x)=f(x)﹣h(x)=,則F(x0)=0,
F′(x)=f′x)﹣h′(x)=(2x+ ﹣10)﹣(2x0+ ﹣10)
= (x﹣x0)(x﹣ );
當(dāng)0<x0<2時(shí),F(xiàn)(x)在(x0, )上遞減,
∴x∈(x0, )時(shí),F(xiàn)(x)<F(x0)=0,此時(shí) <0,
x0>2時(shí),F(xiàn)(x)在( ,x0)上遞減;
∴x∈( ,x0)時(shí),F(xiàn)(x)>F(x0)=0,此時(shí) <0,
∴y=f(x)在(0,2),(2,+∞)不存在“轉(zhuǎn)點(diǎn)”,
x0=2時(shí),F(xiàn)′(x)= (x﹣2)2,即F(x)在(0,+∞)上是增函數(shù);
x>x0時(shí),F(xiàn)(x)>F(x0)=0,x<x0時(shí),F(xiàn)(x)<F(x0)=0,
即點(diǎn)P(x0,f(x0))為“轉(zhuǎn)點(diǎn)”,
故函數(shù)y=f(x)存在“轉(zhuǎn)點(diǎn)”,且2是“轉(zhuǎn)點(diǎn)”的橫坐標(biāo).
【解析】(1)將a=1代入函數(shù)表達(dá)式,求出導(dǎo)函數(shù)得到單調(diào)區(qū)間從而求出函數(shù)的極值;(2)a=8時(shí),由y=f(x)在其圖象上一點(diǎn)P(x0 , f(x0))處的切線方程,得h(x)=(2x0+ ﹣10)(x﹣x0)+ ﹣10x0+8lnx0 , 設(shè)F(x)=f(x)﹣h(x)=,則F(x0)=0,F(xiàn)′(x)=f′x)﹣h′(x)=(2x+ ﹣10)﹣(2x0+ ﹣10)= (x﹣x0)(x﹣ );分別討論當(dāng)0<x0<2,x0=2,x0>2時(shí)的情況,從而得出結(jié)論.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)隨機(jī)詢問(wèn)110名性別不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:
男 | 女 | 合 計(jì) | |
愛(ài)好 | 40 | 20 | 60 |
不愛(ài)好 | 20 | 30 | 50 |
合 計(jì) | 60 | 50 | 110 |
根據(jù)上述數(shù)據(jù)能得出的結(jié)論是( )
(參考公式與數(shù)據(jù):X2= .當(dāng)X2>3.841時(shí),有95%的把握說(shuō)事件A與B有關(guān);當(dāng)X2>6.635時(shí),有99%的把握說(shuō)事件A與B有關(guān); 當(dāng)X2<3.841時(shí)認(rèn)為事件A與B無(wú)關(guān).)
A.有99%的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B.有99%的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
C.在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D.在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)在以為直徑的圓上, 垂直與圓所在平面, 為的垂心.
(1)求證:平面平面;
(2)若,點(diǎn)在線段上,且,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), (, 為自然對(duì)數(shù)的底數(shù)).
(1)試討論函數(shù)的極值情況;
(2)證明:當(dāng)且時(shí),總有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,兩點(diǎn)P1(x1 , y1),P2(x2 , y2)間的“L﹣距離”定義為|P1P2|=|x1﹣x2|+|y1﹣y2|.現(xiàn)將邊長(zhǎng)為1的正三角形ABC按如圖所示的方式放置,其中頂點(diǎn)A與坐標(biāo)原點(diǎn)重合.記邊AB所在直線的斜率為k,0≤k≤ .求:當(dāng)|BC|取最大值時(shí),邊AB所在直線的斜率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明. 下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實(shí)、黃實(shí),利用勾股+(股-勾)朱實(shí)+黃實(shí)=弦實(shí),化簡(jiǎn),得勾2+股2=弦2. 設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲1000顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )
A. 134 B. 866 C. 300 D. 500
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù),(是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)討論函數(shù)極值點(diǎn)的個(gè)數(shù);
(Ⅱ)若,且命題“,”是假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A={x|﹣1<x≤3},B={x|m≤x<1+3m}
(1)當(dāng)m=1時(shí),求A∪B;
(2)若BRA,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中常數(shù).
(Ⅰ)討論在上的單調(diào)性;
(Ⅱ)當(dāng)時(shí),若曲線上總存在相異兩點(diǎn),使曲線在兩點(diǎn)處的切線互相平行,試求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com