分析 先利用導(dǎo)數(shù)求出在x=1處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.得到xn和an的表達(dá)式,利用裂項(xiàng)法進(jìn)行求解從而問題解決.
解答 解:函數(shù)的導(dǎo)數(shù)f′(x)=(n+1)xn,
則函數(shù)在(1,1)處的切線斜率k=f′(1)=n+1,
在點(diǎn)(1,1)處的切線方程為y-1=k(xn-1)=(n+1)(xn-1),
不妨設(shè)y=0,${x_n}=\frac{n}{n+1}$,
則${a_n}=\frac{x_n}{n^2}$=$\frac{\frac{n}{n+1}}{{n}^{2}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
則a1+a2+…+a2015=1-$\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+$$\frac{1}{2015}$-$\frac{1}{2016}$=1-$\frac{1}{2016}$=$\frac{2015}{2016}$,
故答案為:$\frac{2015}{2016}$.
點(diǎn)評(píng) 本小題主要考查直線的斜率、利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程、數(shù)列等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、化歸與轉(zhuǎn)化思想.利用裂項(xiàng)法 進(jìn)行求和是解決本題的一個(gè)技巧.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3個(gè) | B. | 2個(gè) | C. | 1個(gè) | D. | 0個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com