5.一個(gè)幾何體三視圖如圖所示,則該幾何體的表面積等于( 。
A.B.C.6+(2+$\sqrt{13}$)πD.(4+2$\sqrt{13}$)π

分析 由三視圖可知:該幾何體為圓錐沿軸截取的一半.

解答 解:由三視圖可知:該幾何體為圓錐沿軸截取的一半.
∴該幾何體的表面積=$\frac{1}{2}×4×3$+$\frac{1}{2}×π×{2}^{2}$+$\frac{1}{2}×2π×\sqrt{{2}^{2}+{3}^{2}}$=6+$(2+\sqrt{13})$π.
故選:C.

點(diǎn)評(píng) 本題考查了圓錐的三視圖及其有關(guān)計(jì)算,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=2x+a•2-x(a≠0,a∈R).
(I)當(dāng)a=2時(shí),求f(x)圖象的對(duì)稱軸方程;
(2)求f(x)圖象的一條對(duì)稱軸方程或一個(gè)對(duì)稱中心坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,<$\overrightarrow{a}$,$\overrightarrow$>=60°,則|2$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.凸五邊形ABCD中,AB=AE=CD=BC+DE=1,∠B=∠E=90°,求它的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在三棱錐S-ABC中,側(cè)棱SC⊥平面SAB,SA⊥BC,側(cè)面△SAB,△SBC,△SAC的面積分別為1,$\frac{3}{2}$,3,則此三棱錐的外接球的表面積為(  )
A.14πB.12πC.10πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,等腰直角三角形ABE與正方形ABCD所在的平面互相垂直,AE⊥BE,AB=2,F(xiàn)C⊥平面ABCD,且FC=1.
(Ⅰ)求證:AB⊥平面BCF;
(Ⅱ)求證:EF∥平面ABCD;
(Ⅲ)求點(diǎn)C到平面BDF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知?jiǎng)狱c(diǎn)P到點(diǎn)M(-2,0)和到直線x=-2的距離相等,則動(dòng)點(diǎn)P的軌跡是(  )
A.拋物線B.雙曲線左支C.一條直線D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知tanα=-$\frac{3}{2}$,α為第二象限角
(1)求$\frac{{sin(-α-\frac{π}{2})cos(\frac{3}{2}π+α)tan(π-α)}}{tan(-α-π)sin(-π-α)}$的值;
(2)求$\frac{1}{cosα\sqrt{1+ta{n}^{2}α}}$+$\sqrt{\frac{1+sinα}{1-sinα}}$-$\sqrt{\frac{1-sinα}{1+sinα}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.四棱錐S-ABCD中,底面ABCD為平行四邊形,側(cè)面SBC⊥面ABCD,已知∠ABC=45°,AB=2,BC=2$\sqrt{2}$,SB=SC=$\sqrt{3}$.
(1)設(shè)平面SCD與平面SAB的交線為l,求證:l∥AB;
(2)求證:SA⊥BC;
(3)求直線SD與面SAB所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案