14.在等比數(shù)列{an}中,若a1+a4=18,a2+a3=12,則這個(gè)數(shù)列的公比為( 。
A.2B.$\frac{1}{2}$C.2或$\frac{1}{2}$D.-2或$\frac{1}{2}$

分析 設(shè)等比數(shù)列{an}的公比為q,由a1+a4=18,a2+a3=12,可得${a}_{1}(1+{q}^{3})$=18,${a}_{1}(q+{q}^{2})$=12,q≠-1.聯(lián)立解出即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q,∵a1+a4=18,a2+a3=12,
∴${a}_{1}(1+{q}^{3})$=18,${a}_{1}(q+{q}^{2})$=12,q≠-1.
化為:2q2-5q+2=0.
聯(lián)立解得q=2或$\frac{1}{2}$.
故選:C.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.過(1,1),(2,-1)兩點(diǎn)的直線方程為(  )
A.2x-y-1=0B.x-2y+3=0C.2x+y-3=0D.x+2y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}為等差數(shù)列,數(shù)列{bn}滿足bn=an+n+4,若b1,b3,b6成等比數(shù)列,且b2=a8
(1)求an,bn;
(2)求數(shù)列{$\frac{1}{{a}_{n}•_{n}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知單位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角為60°,則|$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知集合M={x|x≥1或x≤0},設(shè)不等式x2-ax+(a2-1)≥0的解集為N.
(1)若M=N,求a的值;
(2)若M⊆N,求a的取值范圍;
(3)若該不等式在∁RM上有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖所示,PA,PB分別切圓O于A,B,過AB與OP的交點(diǎn)M作弦CD,連結(jié)PC,求證:$\frac{PC}{CM}=\frac{OD}{OM}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖(1),在等腰梯形ABCD中,AB∥CD,E,F(xiàn)分別為AB和CD的中點(diǎn),且AB=EF=2,CD=4,M為CE中點(diǎn),現(xiàn)將梯形ABCD沿EF所在直線折起,使平面EFCB⊥平面EFDA,如圖(2)所示,N是CD的中點(diǎn).

(Ⅰ)證明:MN∥平面ADFE;
(Ⅱ)求二面角M-NA-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB⊥BC,AD⊥CD,PA=AD,△BCD是邊長為$\sqrt{3}$的正三角形.
(1)連接AC與BD交于點(diǎn)O,點(diǎn)M是PB的中點(diǎn),求證:OM∥平面PAD;
(2)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知角α的終邊經(jīng)過點(diǎn)P(12,5),則tanα的值為$\frac{5}{12}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案