分析 由相交弦定理知DM•CM=AM•MB=AM2.直角三角形AMO∽直角三角形PMA,所以$\frac{AM}{OM}$=$\frac{PM}{AM}$,進(jìn)一步證明△CMP∽△OMD,即可證明結(jié)論.
解答 證明:因?yàn)镻A、PB分別切圓O于點(diǎn)A、B,OP與AB交于M
所以O(shè)P垂直平分AB
又圓O中AB,CD交于M,
由相交弦定理知DM•CM=AM•MB=AM2.
連接OA,因?yàn)锳P為圓O切線,所以∠OAP=90°
又∠AMP=90°,所以∠OAM+∠MAP=∠MAP+∠APM=90°
所以∠OAM=∠APM
所以直角三角形AMO∽直角三角形PMA
所以$\frac{AM}{OM}$=$\frac{PM}{AM}$
所以PM•OM=AM2,
又DM•CM=AM•MB=AM2,
所以PM•OM=DM•CM,
所以$\frac{PM}{CM}=\frac{DM}{MO}$,
又∠CMP=∠ODM
所以△CMP∽△OMD
所以$\frac{PC}{CM}=\frac{OD}{OM}$.
點(diǎn)評(píng) 本題考查相交弦定理,考查三角形相似的判定與性質(zhì),考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
休閑方式 性別 | 看電視 | 運(yùn)動(dòng) | 合計(jì) |
女 | 10 | 10 | 20 |
男 | 10 | 50 | 60 |
總計(jì) | 20 | 60 | 80 |
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{1}{2}$ | C. | 2或$\frac{1}{2}$ | D. | -2或$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -20 | B. | -10 | C. | 10 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,0) | B. | (0,1) | C. | (1,2) | D. | (2,3) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com