5.如圖所示,PA,PB分別切圓O于A,B,過AB與OP的交點(diǎn)M作弦CD,連結(jié)PC,求證:$\frac{PC}{CM}=\frac{OD}{OM}$

分析 由相交弦定理知DM•CM=AM•MB=AM2.直角三角形AMO∽直角三角形PMA,所以$\frac{AM}{OM}$=$\frac{PM}{AM}$,進(jìn)一步證明△CMP∽△OMD,即可證明結(jié)論.

解答 證明:因?yàn)镻A、PB分別切圓O于點(diǎn)A、B,OP與AB交于M
所以O(shè)P垂直平分AB
又圓O中AB,CD交于M,
由相交弦定理知DM•CM=AM•MB=AM2
連接OA,因?yàn)锳P為圓O切線,所以∠OAP=90°
又∠AMP=90°,所以∠OAM+∠MAP=∠MAP+∠APM=90°
所以∠OAM=∠APM
所以直角三角形AMO∽直角三角形PMA
所以$\frac{AM}{OM}$=$\frac{PM}{AM}$
所以PM•OM=AM2,
又DM•CM=AM•MB=AM2,
所以PM•OM=DM•CM,
所以$\frac{PM}{CM}=\frac{DM}{MO}$,
又∠CMP=∠ODM
所以△CMP∽△OMD
所以$\frac{PC}{CM}=\frac{OD}{OM}$.

點(diǎn)評(píng) 本題考查相交弦定理,考查三角形相似的判定與性質(zhì),考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知直線l:x+2y-3=0,直線l1過點(diǎn)(2,3).
(1)若l1⊥l,求直線l1的方程;
(2)若l1∥l,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.為調(diào)查某社區(qū)居民的業(yè)余生活狀況,研究居民的休閑方式與性別的關(guān)系,隨機(jī)調(diào)查了該社區(qū)80名居民,得到下面的數(shù)據(jù)表:
休閑方式
性別
看電視運(yùn)動(dòng)合計(jì)
101020
105060
總計(jì)206080
(Ⅰ)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“居民的休閑方式與性別有關(guān)系”?
(Ⅱ)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人以運(yùn)動(dòng)為休閑方式的人數(shù)為隨機(jī)變量X.求X的分布列、數(shù)學(xué)期望和方差.
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知方程x2-3x+1=0的兩根為x1和x2,求(x1-3)(x2-3)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在等比數(shù)列{an}中,若a1+a4=18,a2+a3=12,則這個(gè)數(shù)列的公比為( 。
A.2B.$\frac{1}{2}$C.2或$\frac{1}{2}$D.-2或$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在直三棱柱ABC-A1B1C1(側(cè)棱垂直于底面的棱柱為直棱柱)中,BC=CC1=1,AC=2,∠ABC=90°.
(1)求證:平面ABC1⊥平面A1B1C;
(2)設(shè)D為AC的中點(diǎn),求平面ABC1與平面C1BD所成銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖是某幾何體的三視圖,作出它的直觀圖(注意:平行于那條軸的線段長(zhǎng)度變短?)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=2ln3x+8x,則$\underset{lim}{△x→0}$$\frac{f(1+△x)-f(1)}{△x}$的值為( 。
A.-20B.-10C.10D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.根據(jù)e2=7.39,e3=20.08,判定方程ex-x-6=0的一個(gè)根所在的區(qū)間為( 。
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案