10.已知角α的終邊經(jīng)過點(diǎn)P(12,5),則tanα的值為$\frac{5}{12}$.

分析 根據(jù)題意任意角三角函數(shù)的定義即可求出.

解答 解:由α的終邊經(jīng)過點(diǎn)P(12,5),
可知tanα=$\frac{y}{x}$=$\frac{5}{12}$,
故答案為:$\frac{5}{12}$

點(diǎn)評 本題考查任意角三角函數(shù)的定義,掌握任意角三角函數(shù)的定義是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在等比數(shù)列{an}中,若a1+a4=18,a2+a3=12,則這個數(shù)列的公比為(  )
A.2B.$\frac{1}{2}$C.2或$\frac{1}{2}$D.-2或$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.平面直角坐標(biāo)系中,若函數(shù)y=f(x)的圖象將一個區(qū)域D分成面積相等的兩部分,則稱f(x)等分D,若D={(x,y)||x|+|y|≤1},則下列函數(shù)等分區(qū)域D的有①②(將滿足要求的函數(shù)的序號寫在橫線上).
①y=sinx•cosx,②y=x3+$\frac{1}{2016}$x,③y=ex-1,④y=|x|-$\frac{3}{4}$,⑤y=-$\frac{9}{2}{x^2}+\frac{5}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)命題p:“若ex>1,則x>0”,命題q:“若a>b,則$\frac{1}{a}$<$\frac{1}$”,則命題“p∧q”為假命題.。ㄌ睢罢妗被颉凹佟保

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在平面直角坐標(biāo)系中,A(-2,0),B(2,0),M(8,0),N(0,8),若$\overrightarrow{AP}$•$\overrightarrow{BP}$=5,$\overrightarrow{OQ}$=($\frac{1}{3}$-t)$\overrightarrow{OM}$+($\frac{2}{3}$+t)$\overrightarrow{ON}$(t為實數(shù)),則|$\overrightarrow{PQ}$|的最小值是( 。
A.4$\sqrt{2}$-3B.4$\sqrt{2}$+3C.4$\sqrt{2}$-1D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.根據(jù)e2=7.39,e3=20.08,判定方程ex-x-6=0的一個根所在的區(qū)間為(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2sin(ωx),其中常數(shù)ω>0.
(1)若y=f(x)在[-$\frac{π}{4}$,$\frac{2π}{3}$]上單調(diào)遞增,求ω的取值范圍;
(2)令ω=2,將函數(shù)y=f(x)的圖象向左平移$\frac{π}{6}$個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象.
①求函數(shù)g(x)的解析式,并用“五點(diǎn)法”作出該函數(shù)在一個周期內(nèi)的圖象;
②對任意a∈R,求函數(shù)y=g(x)在區(qū)間[a,a+10π]上零點(diǎn)個數(shù)的所有可能值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)是奇函數(shù),且當(dāng)x>0時,f(x)=x3+2x2-1,求f(x)在R上的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列關(guān)于邏輯結(jié)構(gòu)與流程圖的說法中正確的是(  )
A.一個流程圖一定會有順序結(jié)構(gòu)B.一個流程圖一定含有條件結(jié)構(gòu)
C.一個流程圖一定含有循環(huán)結(jié)構(gòu)D.以上說法都不對

查看答案和解析>>

同步練習(xí)冊答案