【題目】已知數(shù)列{an}滿足:,且an+1(n=1,2…)集合M={an|}中的最小元素記為m.
(1)若a1=20,寫出m和a10的值:
(2)若m為偶數(shù),證明:集合M的所有元素都是偶數(shù);
(3)證明:當(dāng)且僅當(dāng)時,集合M是有限集.
【答案】(1)6,22;(2)證明見解析;(3)證明見解析.
【解析】
(1)利用遞推公式依次求出數(shù)列的前10項,推導(dǎo)出集合中的最小元素..
(2)推導(dǎo)出,當(dāng)時,或,由為偶數(shù),得到為偶數(shù),為偶數(shù),由此能證明若為偶數(shù),則集合的所有元素都是偶數(shù).
(3)推導(dǎo)出,當(dāng)時,.從而集合.由此能證明當(dāng)且僅當(dāng)時,集合是有限集.
因為數(shù)列滿足:,且
集合中的最小元素記為.
所以,
,
,
,
,
,
,
,
,
所以集合中的最小元素..
(2)證明:因為數(shù)列滿足:,且,
集合中的最小元素為偶數(shù).
所以,當(dāng)時,或,
因為為偶數(shù),為偶數(shù),為偶數(shù),
所以若為偶數(shù),則集合的所有元素都是偶數(shù).
(3)證明:因為數(shù)列滿足:,且,
集合中的最小元素為偶數(shù).當(dāng)且僅當(dāng),
所以,當(dāng)時,.
得集合.
所以,當(dāng)且僅當(dāng)時,集合是有限集.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于直線m、n及平面、,下列命題中正確的個數(shù)是( )
①若,則 ②若,則
③若,則 ④若,則
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場所對冬季晝夜溫差大小與某反季大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了2019年12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下表:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的兩組數(shù)據(jù)進(jìn)行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;并預(yù)報當(dāng)溫差為時,種子發(fā)芽數(shù).
附:回歸直線方程:,其中;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌服裝店為了慶祝開業(yè)兩周年,特舉辦“你敢買,我就送”的回饋活動,規(guī)定店慶當(dāng)日進(jìn)店購買指定服裝的消費者可參加游戲,贏取獎金,游戲分為以下兩種:
游戲 1:參加該游戲贏取獎金的成功率為,成功后可獲得元獎金;
游戲 2:參加該游戲贏取獎金的成功率為,成功后可得元獎金;
無論參與哪種游戲,未成功均沒有收獲,每人有且僅有一次機會,且每次游戲成功與否均互不影響,游戲結(jié)束后可到收銀臺領(lǐng)取獎金。
(Ⅰ)已知甲參加游戲 1,乙參加游戲 2,記甲與乙獲得的總獎金為,若,求的值;
(Ⅱ)若甲、乙、丙三人都選擇游戲 1或都選擇游戲 2,問:他們選擇何種規(guī)則,累計得到獎金的數(shù)學(xué)期望值最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點,動點在軸上運動,過點作直線交軸于點,延長至點,使.點的軌跡是曲線.
(1)求曲線的方程;
(2)若,是曲線上的兩個動點,滿足,證明:直線過定點;
(3)若直線與曲線交于,兩點,且,,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(Ⅰ)當(dāng)時,求曲線在點處的切線方程;
(Ⅱ)當(dāng)時,
(ⅰ)求的單調(diào)區(qū)間;
(ⅱ)若在區(qū)間內(nèi)單調(diào)遞減,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為降低空氣污染,提高環(huán)境質(zhì)量,政府決定對汽車尾氣進(jìn)行整治.某廠家生產(chǎn)甲、乙兩種不同型號的汽車尾氣凈化器,為保證凈化器的質(zhì)量,分別從甲、乙兩種型號的凈化器中隨機抽取100件作為樣本進(jìn)行產(chǎn)品性能質(zhì)量評估,評估綜合得分都在區(qū)間.已知評估綜合得分與產(chǎn)品等級如下表:
根據(jù)評估綜合得分,統(tǒng)計整理得到了甲型號的樣本頻數(shù)分布表和乙型號的樣本頻率分布直方圖(圖表如下).
甲型 乙型
(Ⅰ)從廠家生產(chǎn)的乙型凈化器中隨機抽取一件,估計這件產(chǎn)品為二級品的概率;
(Ⅱ)從廠家生產(chǎn)的乙型凈化器中隨機抽取3件,設(shè)隨機變量為其中二級品的個數(shù),求的分布列和數(shù)學(xué)期望;
(Ⅲ)根據(jù)圖表數(shù)據(jù),請自定標(biāo)準(zhǔn),對甲、乙兩種型號汽車尾氣凈化器的優(yōu)劣情況進(jìn)行比較.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,討論極值點的個數(shù);
(2)若a,b分別為的最大零點和最小零點,當(dāng)時,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com