【題目】已知定點(diǎn),動(dòng)點(diǎn)軸上運(yùn)動(dòng),過(guò)點(diǎn)作直線軸于點(diǎn),延長(zhǎng)至點(diǎn),使點(diǎn)的軌跡是曲線

1)求曲線的方程;

2)若,是曲線上的兩個(gè)動(dòng)點(diǎn),滿足,證明:直線過(guò)定點(diǎn);

3)若直線與曲線交于,兩點(diǎn),且,,求直線的斜率的取值范圍.

【答案】(1) ;(2) 直線過(guò)定點(diǎn);(3)

【解析】

(1)設(shè)出動(dòng)點(diǎn),則的坐標(biāo)可表示出,利用,可求得的關(guān)系式,即的軌跡方程.

(2)設(shè)直線 ,聯(lián)立直線與(1)中所得拋物線的方程,利用韋達(dá)定理表示,進(jìn)而求得即可.

(3)設(shè)出直線的方程,A,B的坐標(biāo),根據(jù)推斷出,把直線與拋物線方程聯(lián)立消去求得的表達(dá)式,進(jìn)而求得,利用弦長(zhǎng)公式表示出,再根據(jù)的范圍,求得的范圍.

(1)設(shè)動(dòng)點(diǎn),則,,

,即,化簡(jiǎn)得.

(2)設(shè)直線 ,聯(lián)立.

設(shè),,.

,故由題有,.

由題意可知,.故直線 ,恒過(guò)定點(diǎn).

(3)設(shè)直線方程為,與拋物線交于點(diǎn),

則由,得,即,

,解得,

,

,

當(dāng)恒成立,

.

由題意,,

可得,

,

因?yàn)?/span>,故

解得,

.

即所求的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是給定的平面向量,且為非零向量,關(guān)于的分解,有如下個(gè)命題:

給定向量,總存在向量,使得

給定不共線向量,總存在實(shí)數(shù),使得;

給定向量和整數(shù),總存在單位向量和實(shí)數(shù),使得;

給定正數(shù),總存在單位向量和單位向量,使得;

若上述命題中的向量在同一平面內(nèi)且兩兩不共線,則其中真命題的序號(hào)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(Ⅰ)當(dāng)時(shí),求的最小值;

(Ⅱ)若有兩個(gè)零點(diǎn),求參數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)為1的正四面體ABCD中,M,N分別為棱ABCD的中點(diǎn),一個(gè)平面分別與棱BC,BD,AD,AC交于EF,G,H,且MN⊥平面EFGH.給出下列六個(gè)結(jié)論:①ACBD,②AB//平面EFGH,③平面ABC⊥平面EFGH,④四邊形EFGH的周長(zhǎng)為定值;⑤四邊形EFGH的面積有最大值;⑥四邊形EFGH一定是矩形,其中,所有正確結(jié)論的序號(hào)是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足:,且an+1n=1,2…)集合M={an|}中的最小元素記為m.

1)若a1=20,寫出ma10的值:

2)若m為偶數(shù),證明:集合M的所有元素都是偶數(shù);

3)證明:當(dāng)且僅當(dāng)時(shí),集合M是有限集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,四邊形為菱形,且是等邊三角形,點(diǎn)是側(cè)面內(nèi)的一個(gè)動(dòng)點(diǎn),且滿足,則點(diǎn)所形成的軌跡長(zhǎng)度是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,平面側(cè)面,且,

(Ⅰ)求證:;

(Ⅱ)若直線與平面所成角的大小為,求銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求曲線處的切線方程;

(Ⅱ)求上的單調(diào)區(qū)間;

(Ⅲ)當(dāng)時(shí),證明:上存在最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓C的右焦點(diǎn)為F,過(guò)點(diǎn)F的直線l與橢圓交于AB兩點(diǎn),直線nx=4與x軸相交于點(diǎn)E,點(diǎn)M在直線n上,且滿足BMx軸.

(1)當(dāng)直線lx軸垂直時(shí),求直線AM的方程;

(2)證明:直線AM經(jīng)過(guò)線段EF的中點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案