分析 (1)由橢圓由焦點(diǎn)坐標(biāo)F(1,0),即p2=1,即可求得拋物線C的過程;
(2)將直線方程代入橢圓方程,由△>0,根據(jù)韋達(dá)定理可知x1+x2=2k2+4k2,x1•x2=1,根據(jù)向量的坐標(biāo)表示→MA=m→AF,→MB=n→BF,即可求得m=x11−x1,n=x21−x2,代入即可求得m+n=-1.
解答 解:(1)橢圓的x24+y23=1右焦點(diǎn)F(1,0),
∴p2=1,p=2,
∴拋物線C的方程y2=4x;
(2)由已知可得:直線l的斜率一定存在,
∴設(shè)l:y=k(x-1),l與y軸交于M(0,-k),
設(shè)直線l與拋物線交于A(x1,y1)B(x2,y2),
由{y=k(x−1)y2=4x,則k2x2-2(k2+2)+k2=0,
△=4(k2+2)2-4k4=16(k2+1)>0,
∴x1+x2=2k2+4k2,x1•x2=1,
→MA=m→AF,
∴(x1,y1+k)=m(1-x1,-y1),
x1=m(1-x1)
即m=x11−x1,同理n=x21−x2,
m+n=x11−x1+x21−x2=x1+x2−2x1x21−(x1+x2)+x1•x2=-1,
故對任意的直線l:m+n的值-1.
點(diǎn)評 本題考查拋物線的標(biāo)準(zhǔn)方程及其簡單性質(zhì),考查直線與拋物線的位置關(guān)系,韋達(dá)定理的應(yīng)用,考查計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | sinx | B. | -sinx | C. | cosx | D. | -cosx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k<-1 | B. | k≤-1 | C. | k>2 | D. | k≥2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com