已知雙曲線
x2
a2
-
y2
b2
=1(a>b>0)的右焦點與拋物線y2=4x的焦點F重合,點A是兩曲線的一個交點,且AF⊥x軸,則該雙曲線的離心率為
 
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)拋物線和雙曲線有相同的焦點求得c,根據(jù)AF⊥x軸,可判斷出|AF|的值和A的坐標,代入雙曲線方程,求得離心率e.
解答: 解:∵拋物線y2=4x的焦點(1,0)和雙曲線的焦點相同,
∴c=1
∵A是它們的一個公共點,且AF垂直于x軸,
設A點的縱坐標大于0,
∴|AF|=2,
∴A(1,2),
∵點A在雙曲線上,
1
a2
-
4
b2
=1,
∵c=1,b2=c2-a2
∴a=
2
-1
∴e=
c
a
=1+
2
,
故答案為:1+
2
點評:本題考查拋物線和雙曲線的方程和性質(zhì),主要考查雙曲線的離心率的問題,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若sin(
π
6
)=
3
5
,則cos(
π
3
-α)=( 。
A、-
3
5
B、
3
5
C、
4
5
D、-
4
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

把正整數(shù)排列成如圖(1)三角形數(shù)陣,檫去偶數(shù)行中的所有奇數(shù)及奇數(shù)行中的所有偶數(shù),得到如圖(2)的三角形數(shù)陣.設圖(2)中的正整數(shù)按從小到大的順序構(gòu)成一個數(shù)列{an},若ak=431,則k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線x2-
y2
b2
=1(b>0)的離心率
10
,則b等于(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log5x+x-3,在下列區(qū)間中,包含f(x)零點的區(qū)間是(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某學校一個生物興趣小組對學校的人工湖中養(yǎng)殖的某種魚類進行觀測研究,在飼料充足的前提下,興趣小組對飼養(yǎng)時間x(單位:月)與這種魚類的平均體重y(單位:千克)得到一組觀測值,如下表:
xi(月)12345
yi(千克)0.50.91.72.12.8
(1)在給出的坐標系中,畫出關(guān)于x,y兩個相關(guān)變量的散點圖.
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出變量y關(guān)于變量x的線性回歸直線方程
?
y
=
b
x+
?
a

(3)預測飼養(yǎng)滿12個月時,這種魚的平均體重(單位:千克)
(參考公式:
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n(
.
x
)
2
?
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在9和243之間插入2個數(shù),使它們成等比數(shù)列,求這兩個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設向量
a
=(1,2),
b
=(-2,1),則下列結(jié)論中不正確的是(  )
A、|
a
-
b
|=|
a
+
b
|
B、(
a
-
b
)⊥(
a
+
b
C、|
a
|=|
b
|
D、
a
b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由直線2x+y-4=0上任意一點向圓(x+1)2+(y-1)2=1引切線,則切線長的最小值為
 

查看答案和解析>>

同步練習冊答案