分析 (1)設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),由題意可得c=2,代入P的坐標(biāo),解方程可得a,b,進(jìn)而得到橢圓方程;
(2)由題意可得c=4,a=5,求得b=3,由焦點(diǎn)在y軸上,即可得到所求橢圓方程;
(3)求得a=7,c=3,可得b,進(jìn)而得到橢圓方程,注意兩種情況.
解答 解:(1)設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),
即有c=2,a2-b2=c2,$\frac{9}{{a}^{2}}$+$\frac{24}{^{2}}$=1,
解得a=6,b=4$\sqrt{2}$,
即有橢圓方程為$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{32}$=1;
(2)由題意可得c=4,a=5,b2=a2-c2=9,
即有橢圓方程為$\frac{{y}^{2}}{25}$+$\frac{{x}^{2}}{9}$=1;
(3)a+c=10,a-c=4,
解得a=7,c=3,
即有b=$\sqrt{{a}^{2}-{c}^{2}}$=2$\sqrt{10}$,
即有橢圓的方程為$\frac{{x}^{2}}{49}$+$\frac{{y}^{2}}{40}$=1或$\frac{{y}^{2}}{49}$+$\frac{{x}^{2}}{40}$=1.
點(diǎn)評(píng) 本題考查橢圓的方程的求法,考查橢圓的性質(zhì),注意討論橢圓的焦點(diǎn)位置,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 370 | B. | 270 | C. | 250 | D. | 490 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 8$\sqrt{3}$ | C. | 8$\sqrt{2}$ | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (5-2$\sqrt{6}$,4-$\sqrt{13}$) | B. | (8-2$\sqrt{15}$,4-2$\sqrt{3}$) | C. | (5-2$\sqrt{6}$,4-2$\sqrt{3}$) | D. | (8-2$\sqrt{15}$,4-$\sqrt{13}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com